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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3910

THE RESPONSE OF AN ATRPLANE TO RANDOM
ATMOSPEERIC DISTURBANCEST

By Frenklin W. Diederich®
SUMMARY

The statistical spproach to the gust-load problem which consists in
considering flight through turbulent air 1o be a stationary random process
is extended by including the effect of lateral varietion of the instan-
taneous gust intensity on the aerodynemic forces. The forces obtained in
this manner are used in dynemic analyses of rigid and flexible alrplanes
free to move vertically, in pitch, end in roll. The effect of the inter-
action of longitudinal, normal, and lateral gusts on the wing stresses
is also considered.

The method of analyzing the rigid-body motions 1s similar to that
used for enalyses of the dynamic stability of airplanes, in that the
equatlions of motion are referred to stabllity axes and expressed 1n terms
of conventionel stability derivetives. The method of analyzing the
dynemic effects of structurel flexibillty consists in an extension of a
numerical-integration approach to the static aerocelastlc problem and is
in a form which offers the possibility of calculating divergence and
flutier speeds wlth relatively little additional effort.

The mean-gquere values, correlation functions, and power spectra of
some of the aserodynemic forces required in this type of enalysis are cal-
culated for one specisal correlation function of the stmospheric turbu-
lence. It 1s shown, for instance, that if the span 1s relatively large
campered with the integral scale of turbulence, the mean-squere 1ift and
root bending moment directly due to the gust are substantlially reduced
when the differences in instantaneous Iintensity of the turbulence slong
the span are teken into account. However, if the motlions of the airplane
are taken into account the mean-square root bending moment msy be increased
as a result of these differences. Also, the mean-square pitching moment
is shown to be substantially Increased if the tail length 1s relatively

limis report represents, except for some minor changes, a thesis
submitted in Mey 1954 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the California Institute of
Technology, Pasadens, Calif.

2Now at the Tangley Aeronautical laborstory, lLangley Field, Va.
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large compared with the scale of turbulence. Finslly, the wing stresses
due to longitudinal, normal, end lateral gusts are shown to be statis-
tically independent under certain conditions.

INTRODUCTION

The local velocity fluctuations acting on an airplane flylng through
atmospheric turbulence are functions of time defined only in a statistical
sense and, hence, constitute a stochastic or randaom process. Consequently,
the responses of the eirplene, whether they are motions (1inear or angular
displacement, velocities, or accelerations), forces (1ift, pitching moment,
bending moment, and so on), stresses, or sny other phenomens determined
by the turbulence, can also be known as functions of time in only a sta=-
tistical sense.

This paper is concerned with the statistical characteristics of those
responses which have a bearing on the loeds and stresses experienced by
the asirplene; although other problems such as - those relating to pessenger
camfort or to the stability of the alrplane ss a gun platform can be
treated 1n the seme manner, they will not be considered here.

The first approaches to the gust-load problem which use the statis-
tical techniques developed for stationary random processes appear to be
those of references 1, 2, and 3. (An earlier investigation concerned
with the motions of an alrplane in turbulent asir is reported in ref. k4.)
The fundamentals of these approaches are discussed 1n some detell in
reference 1, and mention is made therein of investigations in other fields
of engineering and physics that have dealt with the problem of deducing
the statistical characteristics of the output or response of a dynamic
system from those of its input. The mean-squere normal acceleratlion of
a rigid eirplane free to move in one degree of freedom, namely, wvertical
motion, is calculated in reference 2. In addition to being rigid, the
alrplane is implicitly essumed to be small enocugh for all lts camponents
to experience the seme gust velocity at any instant of time. This means
that the span of the airplane must be small compared with the integral
scale of atmospherlc turbulence, which on the basis of the available
knowledge concerning the properties of the stmosphere (ref. 4, for instance}
sppears to be in the order of several hundred to 1,000 or 2,000 feet;
that i1s, the span of the airplane must be less than sbout 100 feet.

The purpose of the present paper is;tofextend this epproach to large
flexible airplenes free to move in &1l directions. As used herein, the
terms "small" and “lerge" alrplane refer to airplanes which are very small
and not very smell, respectively, compared wlth the integral scale of
turbulence; thus, an airplane flying in a wlde verilety of atmospheric
conditions mey be "smell" under certsin conditions and "large" under
others. Similerly, the terms "rigid" alrplane and "flexible" airplene
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are used to designate alrplanes flylng, respectively, at speeds far below
those at which dynamic and aeroelastic effects became important, end at
speeds at which these effects have to be taken into account' the"smme

airplene cen thus be "rigid" under some conditions and "flexible" under
others.

Several fundementsl assumptlons are inherent in the analysis con-
talned in this paper. In the first place, all atmospheric disturbances,
motions, and structural deformetions are essumed to be small enocugh to
produce forces that are linear and, hence, superpossble. Also, the turbu-
lent "input" to the alrplane is assumed to be stationery in a statistical
sense; that is, the turbulence in the plene of the flight path 1s hamo-
geneous. For the large ailrplane, the additional assumption is made that
the turbulence 1is exisymmetric with respect to vertical saxes, a condition
less severe than complete isotropy. The statistical characteristics of
the turbulence are thus assumed to be inveriant under a transletion of
the space origin within the horizontal. plene and under a rotetion of the
coordinates sbout the vertical axis. Finally, Taylor's hypothesis to
the effect that time displacements are equlvalent to longltudinal space
displacements is assumed to be valild.

The aerodymnamlc forces directly due to atmospheric turbulence, which
congtitute the input forces for the dynemic system represented by the
alrplane, are calculated in the first part of this paper for the large
airplane, that i1s, for the case where the spanwise distribution of the
intensity of turbulence has to be taken into account. (The effect of
spanwise variation of gust intensity on the 1ift has been treated by a
slightly different method in ref. 5.)

The dynemics of the rigld airplane are congidered in the second part.
The dynemic system is now represented by a set of three simultaneous
ordinary differentisl equations, rather than one as in reference 2; none-
theless, the problem of calculating the required transfer functions is
still one of simple algebra.

The next pert 1s concerned with the small flexible alrplane and thus
has direct spplication to fighter-type sirplenes ard guided missiles
operating at relatively high speeds, in addition to serving as a prelim-
Inary to the last part of the paper. The dynamlc system 1s now represented
by & psrtial differentlial equation, and the celculation of the transfer
functions requires the solution of ordinary differentisl equetions. Once
these functions are calculated, however, the statistical techniques are
the same as before, as & result of the fact that the lateral wvariation in
gust intensity 1s ignored. Either modal or mumericel-integration approaches
may be used to analyze the Qynamics of a swept-wing airplene with arbitrary
stiffness and mass distribution. Although modal spprosches have usually
been preferred in the past for similar problems, it was believed that, in
view of the highly complex nature of modern aircraft structures and the



L NACA TN 3910

advanced type of computing machinery required and generally avallsble for
their ansalysis, the numerical-integration approach would be prefereble
and it has, therefore, been used.

The last pert contains the analysis of the large flexible airplane.
The statistical problem is now that of & system which is characterized
by e partial differential equation with time and a space coordinate as
independent veriebles and which is subjected to a random input that
varies in time and space, s0 that more 1s required than the transfer
functions from the gust intensity at one polnt on the wing to the stresses
at another. The particular statisticasl problem presented by this case
is considered in some detail, end the appropriate transfer functions are
then cobtained by using the numerical-integration approach presented in
the preceding part to solve, in effect, the ordinary differentisl equa-
tions which describe the wing deformations abt any given frequency.

SYMBOLS
A aspect ratio
b span
c(k) Theodorsen function
Cr, 1ift coefficlent, L/qS
ch lift-~curve slope
c, rolling-mament coefficient, I'/qSb

coefficlent of damping in roll, defined as positive for
positive damping '

Q
g

damping-in-pitch derivative

statlic pltching derivative

chord, parallel to plane of symmetry

o o g) é)

average chord, S/b

section lift coefficlent at station y, 1/qc

vl
o
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ET bending stiffness

e] distence from section serodynamic center to shear center,
fraction of chord

ey dlstance from shear center to section center of gravity,
fraction of chord

ez distance from shear center to the midchord point, fraction
of chord

&), distance from shear center to the B/h—chord point, fraction
of chord

G{(y,n) dimensionless lift-influence function (Green's function for
the spanwise lift distribution)

GI torsional stiffness

g acceleration due to gravity

E(w) response to sinusoidal oscillstion, Fourier transform of h(t)
h(t) indicial-response function

I mass moment of inertia ebout X-axis

Iy maess moment of inertls sbout Y-axis

Jgs97 Bessel functions of the flrst kind, order O end 1

Ko-¥Kq modified Bessel functions of the second kind, order O and 1

Kig integral of K,
k reduced frequency, E/2U

k' dimensionless frequency, oL*/U
L 1ift

L' rolling moment

¥ integral scale of turbulence

I3 distributed 1lift per unit distance along the span
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pitching moment Ll

bending moment
twilisting moment

mass (of alrplane, unless designated otherwlse by subscripts)
distributed mass per unlt distance slong the span

distributed twisting moment (sbout axes perpendicular to the
plane of symmetry) per unit distence along the span

dynemic pressure

radius of gyratlion gbout center of gravity; longitudinal dis-
placement corresponding to time displecement T

wing area

L*
scale parameter, =7—
c/e

time

meen flylng speed

longitudinal component of gust yeloclty
horizontal component of disturbed motion
lateral component of gust velocity
welght of alrplane

vertical component of gust veloecity

vertical camponent of disturbed motion

coordinate along mean fiight path

distance from intersection of elastic axis and root chord to
alrplane center of gravity

tall length, distance from sirplane center of gravity to
aerodynamic center of tail )
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modified taill length, distance from intersection of elastic
exls end root chord to serodynasmic center of tail
coordinate perpendiculer to plane of symmetry

coordinate in plane of symmetry perpendicular to mean flight
path; vertical deflection

inclination of chord to X-axis
spen ratio, b/L¥
autoconvolution function for ¥(y)

dimensionless 1ift distribution, ch/ECL

dimensionless 1ift distribution in roll, CCI/ECZP

varieble of integration corresponding to ¥

angle of pitech

angle of sweepback

mass denslity of the alr

time displacement, argument of time-correlstion function

the power spectrum ¢ 1in the case of axisymmetry
two-dimensional power spectrum (double Fourier trensform of 'ﬁ)
Seers function (unsteady-lift function for gust penetration)
one~dimensionel or point power spectrum

two-dimensional power spectrum (single Fourier transform of W)
one~dimensionel or point correletion function

two~dimensional correlation function

frequency of oscillation
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Subscripts:
e,€ effective
f fuselage
r wing root
tall
u horizontal component of turbulence
W wing; verticel component of turbulence

Matrix notation:

[ J square or rectangular matrix
I 1 diagonal metrix

L J row matrix

{ } column matrix

Dots over symbols indicaete derivetives with respect to time.

AFRODYNAMIC FORCES RESULTING DIRECTLY FROM

ATMOSPHERIC TURBULENCE

The motions of a rigld airplene depend on the overall forces and
moments, whereas the stresses of a rigid airplane and the motlons and
stresses of a flexible alrplane depend on the distribution of these
forces, a8 well. This part of the report ls concerned with the calcu-
lation of the integrated and distributed forces and moments directly
due to stmospherlc burbulence when the spanwise variation of gust inten-
sity hes to be taken into sccount. (The forces and moments caused by
the motions which result from the forces treated in this part can he
calculated by conventionsl methods and will not be considered here,
although the cambined forces wlll be considered in the following parts.)
Thus, this psrt serves as a basls for all the meterial presented in the
later parts perteilning to the large airplsne, and, hence, the fundemental
notions required for an analysis of the large airplane are introduced
here and discussed in some detaill.

The besic approach is as follows:  First, the instentaneous value
of the quentity of interest, such as the 1ift, is expressed in terms of
the Instanteneocus gust intensity at a goigg_and a_ﬁu%table influence
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function. For the 1ift this influence function can and will be 1dentified
with a certain 1ift distribution on the given wing in reverse flow; the
same procedure may and, in the case of the rolling mament, will be fol-
lowed for other integrated forces. On the other hand, for the local 1lift
the influence function is the Green's function for the three~dimensionsal
unsteady-1ift problem end cannot be ldentified with an easily calculated
1ift distribution on the wing in reverse flow. Inasmuch as no knowledge
concerning this function appears to be availeble, a method of calculating
an approximate Green's function for this problem is outlined herein.

The required Influence functions for integrated effects can be synthesized
from this function, and 1f the associated 1ift distribution in reverse
flow cannot be calculated .conveniently this approach may be prefereble.
This technique is 1llustrated here by means of the bending moment.

The next step consists in using the expression for the instantaneocus
value of the given quantity to calculate a correlation function for this
guantity in terms of a correlstion function of the normal component of
the atmospheric turbulence. The power spectrum for the given quantity
can then be obtained by taking the Fourier transform of its correlation
function. This power spectrum ls consldered herein to be the desired
end result, because the meen-square values of the quantity and its deriv-
atives can be obtained from i1t, and other statistical parameters of
interest can be obtained from these mean-square values. Several alter-
native approaches for calculating the aforementioned spectrum, elther
from the correlation function or directly from the spectrum of stmospheric
turbulence, are given in connectior with the 1ift and are directly sppli-
cable to other guantities as well.

In this part of the report the assumption is made that the influence
functions of concern can be written as products of a function of time
alone and a function of distance along the spen alone, and sdvantage is
taken of this simplification In calculeting the desired spectra. This
restriction is removed In the last part of the report, where the influence
functions considered cannot be separated into space-dependent and time-
dependent constituents, and so the approaches outlined there are general-
izations of those presented in this part; they may also be used for the
calculation of the spectra of the guantities considered in this part if
the assumption concerning the influence functions is not velid.

Definitions of Statistical Parameters

As pointed out in the introduction, the intensity of the vertical
component of turbulence w(t) is a random process, so thet the resulting
forces can also be known only in a statistical sense. The purpose of
this part is to calculate certain statisticel properties of these forces
namely, their mean-square values, their correlation functions, and theis
power spectra. The fundamental principles involved in statistical
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analyses of the type considered herein are expounded in scme detail, and
citations of the literature on the subject are given in references 1

end 2. These fundementals will therefore not be repeated here. However,
both for the sake of ready reference and inasmuch as the statistical
terms are not always defined in the same manner, the forms thet are used
herein are indicated In the succeeding parsgrephs.

The time average of a time-dependent quentity is designeted by a bar
placed over the symbol,l and 1s defined as follows:

T
T = 1
E = lim = £(t) dat
T—cw 2T =T

The assumption will elweys be mede that this limit exists and 1s inverieni
under a translation of the origin of time. Thie assumption implies that
the processes considered here are stationary in a statisticel sense.

The mean of a random process f£(t) i1s defined as its time average,
and is always assumed to be zero. In dealing with processes wilth nonzero
mesn this analysis is thus pertinent only to the process which consists
of the difference between the original process and its mean value. Simi-
larly, the mean-squere value of a rendom process f(t) is defined as
the time average of the. square of the process, so that

_, i
2 = 1im Lf £2(t) at
T—w 2TJop- -

The time-correlation function of f£(t) 1s defined as
Yp(r) = £(t) £(t+1)
so that

2 = y,(0)

hen no possibility of confusion exists, a bar is also used to
designate a space aversge, as in the case of T and ¥. Also, for the
components of turbulence the correlation functions depend primsrily on
space dlsplacements and can be defined by space averages. For the sske
of consistency, however, they are considered to be defined by time
averages. T
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and the power spectrum of f(t)} is defined as the Fourier transform of
the correlestion function:

o2]

f e i wf('r) dr

L) -

The second form is the more convenient one when Ve represents more

nearly a space correlation than a time correletion, so that it depends
directly on a space dlsplacement r = Ut rather than on a time displece-
ment T. For the purposes of the analysis presented herein, the gust

or ilnput correletion functions haeve this property, so that, for Instance,
¥, ey be defined as

=

(Pf (‘D)

&l

1[rw(r) = w(t) w(t-l%)

By virtue of the reciprocal properties of Fourier transforms and
the symmetry of 1[rf(-r) s which is a direct consequence of the assumed

stationarity of f£(t), f2 may be expressed in terms of the spectrum of
f as

f_2 =£°° (Pf(w) dw (1)

If f£(t) 1s the input of a linesr system, the power spectrum of
tlee response x(t) of the system is related to the power spectrum of
£f(t) by

2
2, () = [Bw)] o) (2)

where H(w) is the transfer function of the system, that is, the camplex
emplitude of the response of the system to unit sinusoidel input. Hence,
H(w) 1is also the Fourier transform of the indicial response h(t) of
the system, which is defined herein as the response of the system to a
unit impulsive input:

Hw) =f°° e~it p(g) at (3)



i2 : NACA TN 3910

where the lower limit could be taken as zero, since n(t) 1is zero for
t < 0. Conversely, h(t) can be obtained from H(w) by means of the
inverse of equation (3):

n(e) = 1 f " ot B(e) ae (30)

The mean-square value of the response can then be obtained by inte-
grating its spectrum. Similerly, the mean-squere values of the nth time
derivative of the response cen be obtained from the (2n)th moment of the
output spectrum. For Iinstance,

(&) - [ oo o w0

Fram the mesn-square values of these derivatives other statilstical quan-
tities of interest, such as the expected number of peaks of the response
per unlt time, can then be calculated.

Lift-Influence Functions in Unsteady Flow

At any time the 11ft on a wing which results directly from atmos-
pheric disturbances can be expressed for an unswept wing as

L(t) = [: aty f_:i h(tl,y) w(U(t-tl),y) dy ()

where h(t,y) dy 1s a lift-influence function which represents the Llift
ceused by en impulsive vertical gust of width dy which at time +t =0
impinges on the wing at station y.

The influence functions required in equation (4) are difficult to
calculate directly; methods for obtaining 1ift distributions on wings of
finite span in unsteady flow usually require numerlcal soclutions which
do not lend themselves reedilily to the analygls of angle-of-attack distrl-
butions represented by delta functions. However, by virtue of the reci-
procity theorems of linesrized lifting-surfece theory (ref. 6, for
instence) the lift influence function for a twisted wing in indicial
motion is equal to the 1ift distribution on thet wing during indicial
motion In the reverse dlrectlion with uniform unit angle of sttack. The
1ift distribution in indicial motion with uniform angle of attack can
be calculated relatively easily.
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For the few cases for which calculations have been made (namely,
same unswept wings), this lift distribution tends to be substantially
invarient in time, except for overall magnitude. For instance, the
calculations of reference 7 iIndicate that the 1ift distribution of an
oscillating rectanguler or elliptic wing in incompressible flow is sub-
stantially independent of frequency, so that in indicial motion 1t is
substantially independent of time. This simplification may not be valid

for swept wings.

The 1ift influence function can then be written as

n(t,¥) = £ nr(t) 7(z) (5)

where v(y) defines the steady-state 1ift distribution for uniform unit
angle of attack:

ccC
y(y) = :—él
L

and where hr(t) describes the variation of the overall magnitude of
the 1ift as & function of time after entry into a sharp-edge gust and
mey be written as

Cy. aB
Lo 4 Ut
h-(t) = —_
i) = —— k2<372
In turn, k2 is the 1ift response to a unit sharp-edge gust normalized

to a steady-state value of unlty and is, as in the preceding equeation,
usually expressed in terms of semichord lengths traveled g%;. The time
Cc

derivative 1s taken here because the response wanted 1s the one to a
unit impulsive gust rather than = sharp-edge gust.

The Fourier transform Eiﬂm) of this function hL(t) is proportional

to a function ¢(k), which may be termed the generalized Sears functlion
because for two-dimensionel Incampressible flow it is the Sears function:

Cc S
() = —2 g(x) (6)

where

]
R
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The function Hy(w) represents the camplex emplitude of the 1ift due

to sinusoldal gusts of unit amplitude and 1s thus the transfer function
from the gust to the 1ift.

Actually, only the sbsolute square of @(k) will be required. For
two-dimensional incompressible flow the followlng approximation is given
in reference 1:

|g)]® ~ —L (7

1+ 2%k

This expression hes the edventage of simplicity, although it is somewhat
in error compared wilith the sbolute square of the Sears function at very
low frequencles, a fact which could be remedied by using the spproximation

2 . 1+ gk
[¢(k)| 1 + ak(1l + 2rnk)

where &a 1s gsbout 15 for a good overall fit to the exact expression.
However, the behavior of the Sears function itself at very high frequenciles
1s unrealistic, because its absolute square goes to zero as l/k, where&s
for any nonzero Mach number and any finite span the absolute square of

the generalized Sears function can be shown to tend to zero at least as

repldly as l/k?. As a result of these discrepancies, the epproximation
given by equation (7) and, for the ssme resson, the sbsolute sguare of
the exact Sears function, cannot be used 1o obtaln moments of the 1lift
spectrum, thet is, values of the mean-square derivetives of the 1lift,
although they mey be sdeguate for calculating the mean-square value of
the 1lift itself in many cases, particulerly when sbsolute accuracy i1s

5 .
not required. Whenever possible the values ©of l¢(k)| glven in refer-~
ence 8 for the plan form and Mach number of interest should be used.
Mean-Square Lift and Its Spectral Resolution for
the Unswept Wing

Basic equations.- The correletlion function of the 1ift can be
expressed, by virtue of equation (4), as

® nm bf2 abf
Y (r) = f-w f_“ f 2 f 2 n(t1,¥1) B(t2s¥) w(U(t-tl),yl) w(U(t-n-r-ta),ya) dy, dyp dty dt, (8)

bf2dpf2
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where the aversged product on the right side represents a velocity corre~
lation function. This function depends in general on both space esnd time

v displacements. However, if Taylor's hypothesis is made, the time dis-
placements are equivalent to longitudinal space displacements. The veloc-
ity correlastion functions are then functions only of longitudinal and
lateral space displscements. Thus, for hamogeneous turbulence,

v (xAUt,y) w(x+E+U(L+1),54+0) = %W(§+UT:H) (9)

In sddition to Teylor's hypothesis and the assumption of homogeneity,
+the turbulence is assumed to be sxisymmetric with respect to vertical

axes, so that %&(g,n) is a function only of {t2 + 2. This function
is the ordinsry space-correlation function 4, so that

¥ (UTHE M) = ﬂrwu(Uﬁ& )2+n2)

and, hence,

- b/2 Ab/!
xyL('r) = f f f o2 f :/z h(t1,¥7) h('be,yz) ¥ (,JU (Tt -ta) +(y2—yl) )dyl dy, dt, dt,

If the assumption implicit in equation (5) is now mede, the preceding
equation can be written as

¥ (T) = f_ } f_m hy,(t1) By(tz) qfwe(U(T+tl-t2)) dty dty (10)

where

b/2 Ab/2
e =5 [ / e 1 ([ (7 )2) 21 7(v2) @y @5

=L h/; ° r(n) qfw({uéfemz) an | (11)

where, in turn, I{n) is en autoconvolution of y(y) defined by

h... y! . ’
r(n) = %J::/g 7(y) 7(y+n) dy (12)
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The validity of equation (11l) can be demonstrated by performing the
integration in the ¥1:Yo plane as indicated in the following sketch:

o =V 1
Yo A L _
/y2_yl

I\)lo’

3
\\<ii:
(@)
o’
<Y
'_J

That 1s, integration is performed first over ¥y, with a variable -
M=y, -V held constant. For this integration Ww 1s constant, so
that only 7(yl) and 7(yl+n) are involved, and the result is a

function of 17 which 1s one-half of the function I(n) defined by
equation (12). The second integration is then performed over 1,
yielding equation (11) except for & factor of 1/2. In this process,
only the part of the square gbove the line Jo =V is covered. How~

ever, by & similar process, the part of fthe integral corresponding to

the part of the plene below this line can be evaluated and shown to be
equal to the first part, so that by defining I' es in equation (12),

both parts are tsken into account simultaneously in equation (11).

The quantity

W'e2 = ‘l’we(o)

b
é%/; r(n) ¥, (n) dn

mey be considered an averaged mean-sguare vertical component of turbu-
lence; &we(UT) 1s then the corresponding correlation function, and the

Fourier transform of the latter,
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o 19(T )
Py (@) = = f S ¥ (Ur) a(ur) (13)

U J_

is the corresponding power spectrum.

Once @ (@) hes been obtained, the power spectrum of the 1ift

can be obtalned by teking the Fourier transforms of both sides of equa~
tion (10). The result is

7o) = B ()] oy, () (1)

where Hi(m) is the transfer functlon defined Iin the preceding section.

The mean square of the 1ift can then be obtained by integreting its
spectrum, as indicated in equation (1).

Equation (14) hes the same form as the corresponding equation for-
the case where spanwise averaging of the effects of turbulence is not
taken into account (see eq. (2) and ref. 1), except that ¢W(w) is now

repleced by @, (w). Thus, the spectrum of the averaged turbulence must
Ve

gpproach that of the unaversged turbulence when the span spproaches zero,
as mey be seen to be the case fram equation (11) and the definitions of

y(y) end I{(7).

Two alternative spproaches.- The defining relations for @wé(w),

equations (11) and (13), do not necessarily represent the best method
of calculeting i1t In any given case. A slightly different expression
appears to be more convenient in general. It consigts in substituting
equation (11) into equation (13) and inverting the order of integration .
to yleld

b
Byele) = 1 fo T(n) & (o,n) an (15)
where-

Sto) = 5 [ Sy ({2 aton (16)

s0 thsat

P, 0) = 9 (w)
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A third approach, which haes certain advantages over the others, is
similar to the one that hag been used in reference 5. In this approach
the assumption of exisymmetry ie not mede initially, and use is made of -
the spectrum

3, (MNp) = 2 f f 1(7\1§+7\2n) T (€,m) a¢ an (172)

The correlation function ‘Vwe(UT) can then be written as

b/2

® A[aurs
beo (1) = -L -b/2 fb/a 7(11) 7(¥2) &1 We uf f Pzl w(Ahg) By o

Substitution of this expression into eq_ua.tion (13) and then 1nterchanging
the order of integration yields:

where
b/2 _
T(\) = %f 7(y) eIV ay
-b/2 R
and 18, as a result of the symmetry of 7(y) » real and symmebric in Q.

Now, 1f the turbulence is axisymmetric, aw depends only on

A= 47\12 + Ny, thet is,
o) = ol 22 (17o)
w(MoAo) = SN

so that the expression for CPWe(cu) becomes

P @) = 5 /;w QW(VE %)2+7§2) 2(n) an (18)
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where o (N\) is related to xyw(r) by

e, (\) = %k/; r Jo(Kr) ¥ (r) dr

Although the spectra used 1n the last two epproaches have been
defined by expressions involving the point correlation function ww(r),

they can be expressed equally well in terms of the point spectrum Qw(m),

so that if, Bay, an experimentally cobtained point spectrum is to be used,
1t need not be transformed into a correlation function before it can be
used in these calculations. The requlred relstions are

2

~ > @ [n]Yeo; 2o
Pu(w,n) = g lw) - I_g_lf P (®7) 21 =1 Ul dy  (19)
[of 0 -
and
2 [2]
¢ (A) = - & o(w) o dw (20)
W T j?:U @ (CDZ i ?\2112)3/2

where the notation l is vsed to specify that the finite part of

the integral is to be taken, an operation which may be performed by

integrating by parts and ignoring the infinite part, so that, in terms
of a proper integral,

au? [ dmw(w) dw
Q‘.‘-r(-)\) = - T 3

Also, the function & (A) can be obtained fram & (w,n) by means of
either of the relations

1 7 -~
Qw(x) EEL/: e™ M Qw(o:ﬂ) dn

0

- 2f°°~(m
== @, (AU,1) dan
7 J ’
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Regults of calculstions.- In order to i1llustrate the magnitude of
the effects under consideration, calculations have been mede for e unl-
form loading 7y(y) = 1 .and a point correlation function which has been
used in references 1 and 2 end sppears to fit experimental data (ref. )
falrly well over a large portion of the significant frequency range,
namely,

r - *
() = (1 - L) e/
so that

U] (w) = WE _l_"'_ﬁ_'__z_
M W (14 x2)?

where IX 1s the integral scale of turbulence, which i1s here defined as

¥ =-%£ ¥ (r) ar
W

end where

CDL*
1
k' =

This correlaetion function has the drawback that the moments of the
spectrum associated with 1t ere infinite, so that 1t ilmplies & process
with infinlite meen-square derivatives, but it is quite useful 1f only
the mesn-squere value of the process itself is of interest.

For uniform loading,
£ - 2(2 - 3)

and

*A) = —2
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and for the given correlation function,

o - By B ). (3 el

(l+k') .

where K, and K, ere modified Bessel functions of the second kind, and

"D %2 2
%) = 2 —75
™0 (l + k'e)

The mean-square average gust intensity for this case is given by

—5 T 1 .eB
We2=W21 Be

where B Eb/L*, and 1s shown in figure 1(a). The correlation function
*We is given by

we(*) = sz’ &) (05 sinon™t B) - o ffo(d; sinh~l %) + 95-(9,-0 - e-Jo—z:B_z)}

where o =r/L¥, and where ﬁo(c;e) and ﬁl(o';e) are incomplete modi-
fied Bessel functions of the second kind defined by

2]
R (030) = L cosh nd e~C cosh 3 a4

The spectrum cpr(cn) is given by

wae(m) = W:i :2&]}'* L 5 Bk’zs\ﬁ + k' E{io(g \ﬁ+k’2) -

(1 + x'2)

ByL + ix® Ko(ﬁm)] + (l - 3}:'2) l:2'- 25«1 + k'8 K]_(B 1+k‘2) -
) o)

w
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where Kio(x) is the integral of Kb(x):

Kig(x) =f; Ko(x1) dx;

The functions ‘¥, ~ eand Bre (normalized with the eversged mean-

square turbulent velocity) are shown in figures 2 and 3, respectively.
The effect of the span retio on the normalized correlation function of
the averaged turbulence mey be seen to be relatively small, sc that the
effect on the unnormalized correlation function is primarily the decrease

in overall level given by the ratio of Wéz -to ;2. A similer statement

nmay be made for the power spectrum. If the power spectrum were not
normalized the aversgling effect of the span would tend to reduce the
intensity of the spectrum at all frequencies, but the high frequenciles
would be attenuated much more than the low ones, as might be expected.

In fect, although the unaversged spectrum decreages as w2 at high
frequencies, the averaged spectrum decreases as w'5.

The asymptotic values for b/L*—4>w are shown in figures 2 and 3
in order to indicate the nature of the functions considered here when
the scale of turbulence is small compared with the span, a8 msy be the
case for a wind~tunnel model responding to natural or artificisl tunnel
turbulence, or for a buffeting wing or tail surface, although this con-
dition 1s not of practical concern for the gust-loed problem.

The power spectrum of the 1lift is equal to the product of the power
spectrum @we(w) and the sbsolute square of the transfer function Eiﬁm),

ags Indiceted in equation (lh). Inesmuch as this 1ift 1s not an end in
itself but only one of the parameters that enter into the calculations

of the motion of the airplane, 1its mean~-square Iintensity is of little
practical significance; its spectrum 1s the quantity needed in further
calculations. However, 1f the mean-square intensity is wanted for any
reagon 1t can be obtalned by integrating the spectrum. Thus, for instance,

2
the approximate expression for |¢(k)l given by equation (7) and the
spectrum mw(w) used for the preceding calculatlion ylelds the mean-square

ift:

— or a8\° — 1+ 3(2) s
(I?)B-q>0 = (TEEL_) w2 ;iﬁ (Eﬂz e(i - log éi) S
[% + (ﬁ%):}
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where

L*

5_37'5

and, In view of the cbservation that much of the turbulent energy is
contained in & region for which the span has a very small effect on the

(normalized) spectrum, this equation should serve to furnish an spproxi-
- 2

mation to the mean-square 1ift for nonvanishing span, provided wg is
used instead of we. However, the mean-square values of the derivatives
of the 1ift cannot be calculated in this simple manner, because the
deviation of the normalized averaged spectrum from the point spectrum at
high frequencies cennot be ignored in calculating the moments of the
1ift spectrum.

Mean-Square Lift of the Swept Wing

For the yawed or sideslipping unswept wing, equations (10) and (14)
for the lift-correlation function and spectrum sre still wvalid if an
appropriste lift-influence function is used, and if the correlation
function for the averaged turbulence is defined by

1 b cos A
ur) =
v{rwe( ) b cos A ~/C;

where TI{7) now pertains to a lift-distribution function y(y)y which is

appropriate for yawed motion and is defined for -~ 123- cos A § ¥y 5% cos A.
The meen-square averaged intensity of the vertical component of turbulence

is then

(1) ¥, (\J(UTH] tan A)2+'q2) dn

—_— b cos A
W2 = ——l-—f r(n) urw( 1 )dn

b cos A 0 cos A

1 b
;fo r(n'cos A) ¥ (n') an'

where 7' = E‘EB‘T\_' Thus, this mean-square intensity is unaffected by the

yawlng process, except for the slight change which results from the change
in I'(n), although the spectral resolution of the aversged intensity
changes in the process. .
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For the swept.wing both y, - y; and |y2| - |yl| occur 1n the
integral, so that the reduction of the double integral for ‘ww (Ur) +to

a single integral (see eq. (11l)) cannot be affected so simply The
double integral for the swept wing is ) )

Yo (UT) = —5 o/ fb/2 7(¥1) 7(¥2) \Fw(\([U'r+(|y2| |1 )tan A] +(Yz-¥y1) )dyl dyo (1)

From this integral, by using recteanguler 1ift distributlons and the
aforementioned point correlation function, the mean squere of the averaged
turbulence as well as the corresponding correletion function and power
spectrum have beern calculated by numericel integration for variocus sweep

angles A, the ratio cog ~ being maintéineh at 0.5. (The decision to

hold EEETE rather than £ constant was reached as a result of the

foregoing snalysis_of the yawed unswept wing, which indlcated that the
effects of sweep should be minimized in this menner.) The results for

we2 are shown in figure 1, and the effect of sweep on We2 is seen to

be small for this comparison. The calculated correlation functions and

spectra (normalized with respect to we2) are not shown because they

agreed wlth those for A =0 within less: than 1 percent for most values
of Ur and k', respectively.

Mean-Square Rolling Moment : ' -

In the preceding sectlons the averaging effect of the span has been
shown to consist, essentlally, in reducing the effective intensity of the
turbulence sensed by the wing; -thus, it only modifies the forces present
on a wing of small span. If the analysis 18 extended to the rolling
moment, however, a new phenomenon appears. When a wing 1s so small relative
to the scale of turbulence. that st any instant all of 1ts polnts experience
the same turbulent velocity, the wing experiences no rolling moment as the
result of the direct action of turbulence (although 1t may experience a
rolling moment indirectly as a result of the rolling and yawing motion
caused by the lateral component of the turbulence). On the other hand,
on a large wing the different intensities of the turbulence et different
points on the span give rise directly to & net rolling moment, which then
results in rolling motion. In this section the mean-square value of this
moment is calculated. T

At any instent t the rolling moment Lf(t) cen be wriltten in the
seme form as the 1lift IL{(t) in equation (4); however, according to the
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previously mentioned reciprocity theorem, the lift-influence func-
tion h(t,y) 1s now the 1ift distribution for an indicial roll with
unit helix angle at the wing tip. If the assumption of invarisnce of
this distributlion with time is made, as for the symmetric case (see
eq. (5)), then the required lift-influence function can be written as

h(t,y) = % h'(t) 7' (y)

C;,.(t)aSb
where h'(%) = —a?T, and where the steady-state 1lift distribution

ce
7'(y):s %El now pertalns to a unilt linear antisymmetric angle of attack.
A

The correlation function for the moment can then be written as

tlrL:('r)=f°° fm h'(ty) :h'(te) wwe,(U(ﬂtl-te)) dty dt, (22)

where

/2 (of2. '
kae'(U'r) = ;lg f_ :/z f_‘ 2/2 7'(¥1) 7'(.V2) ¢w<\lU2T2+(5-r2-yl)2) dyl ay,

= %—.\_/: T'(n) WW<QU2T2+T]2) dn (23)

where, in turn, in enalogy wlth equation (12),

(v/2)-
r'(n) = %j:b/z TI7”(y) 7' (y+n) dy

Hence, the second and third approaches indicated in the sectlon concerned
with the mean-square 1ift (see egqs. (15) and (16)) cen be used to obtain

b
oy = & [ () Floyw) an (24)
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and.
g (0) = 5 °w<\/(%)2+7*2)lf'm|2 an
where
N b/2
T'(A) = %f—b/a 7’(}*) e-i& dy
and

¢, aSb 2 .
2
Pp 1 (w) = %_) |8()] " @1 (@) (25)

80 that the mean-squere rolling moment can_be obtained by integrating
this spectrum.

A qualitative indication of the effect of span on the mean-square
rolling moment sensed by an airplane msy be obtained from the quantity
qfwe.(o), which represents the integral of the spectrum q’we" For a

linear loading, 7' =6 —Y— and S : -

/2
r'(n) = 6|4 - 6 + -” >
W =6k -6 g (o)
~ Ab cos A _. gin ?‘b
) = 61 = 2

()

Hence, using the aforementioned expression for the point correlation
function yields

Py 1 (@) = L:gz 3 18 - 4{[‘32 + 282 + (16872 + ™) K (p') +
(l + k' )

(328" + 65'3) K, (p' ):l + k' [32 - 6p" _-'16;3'2 Ko(B') -

(528" + 28"°) x,(p") + 13'3,Kio(e‘il}
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Where

B! = ;341 + k'8

and.

~—[ % :
\ywe1(0) = 1‘?—2-%:- -6+ e'B(6 + 68 + 3p° +13T ;33)]

This spectrum and its integral spproech zero lineerly as £ tends to
Zero.

Generalized Aerodynamic Influence Functions in Unsteady Flow

The serodynemic influence functions used 1n the preceding sections
define the contribution of a given station of e wing to the total 1ift
and rolling moment. In the analysis of a flexible wing, and even in the
calculation of certain properties of & rigid wing, generalized aerodynsemic
influence functions ere required, which define the contributlion of one
station on the wing to the 1ift at another station and thus represent e
Green's function for the unsteady spanwise 1ift distribution. No work
gppears to have been done on such functions. For steady flow, spart from
some calculations for supersonic speeds which are based on the subdivision
of a glven wing into a number of squeares, the only evailgble resulis
sppear to be those given in references 9 and 10.

The analysis in this section is based on reference 8 and consists
in a generalization of the method presented therein to unsteady flow.
This method constitutes an attempt to predict the 1ift distribution for
any gliven twist on the basis of knowledge concerning a few definite
angle~of-attack distributions, and may therefore be termed a function-
Interpolation method. ¥For the present purpose, the presumsbly known 1ift
distributions are the ones for uniform angle of attack in direct and
reverse flow Iin a dimensionless form, nemely, cey /eCy; they will be

referred to as 7D(y) and 7p(y), respectively. (The function y(y)
used previously is the one now designated by 7R(y).) Also required is
the coefficient of damping in roll Clp° (The lift-curve slope and the

coefficlent of damping in roll are the same in direct and reverse flow
by virtue of the reciprocity theorem, so that no distinction will be
mede. )

The gpproach of reference 9 then yilelds the following épproximate
expression for the 1ift distribution due to any angle-of-attack distribu-
tion:
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% B Clu,{a 7p(y) + xlaly) - &] 7R(y)} (26)
where

b/2
- _ 1 o
*= b \/:b/E 7R(y) . (y;?-_ dy

S
c b/2
o ) fo re(y) v2ay

Velues of K may be obtained from the informaetion given in references 9
and 10. As the aspect ratio tends to zero, X approaches 1/2, whereas
for aspect ratios approaching Infinity, K <tends to 1. The following
relations cen be obtained from elementary definitions end from the
aforementioned reciprocity theorem:

Y .
b /2 © : A

EEL:. b/2 )
= f-b/e r(¥) _(y) dy

K =

(27)

b/2 b/2
L =L =
bf'b/g 7p(y) & b\.[.‘.'b/g rg(y) dy =1

b/2 ce.
1 1
0y = & —lyaday
- -b/2 ¢ = __
o b/2(ccz) a5
= == -_— Y

With the aild of these relations the 1lift distributions glven by equa-
tion (26) may readily be seen to have the ¢orrect 1ift and rolling moment
for all angle-of-attack distributions, and to reduce to the exact 1ift
distributions for angle-of-attack distributions whlch vary linearly along
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the span. A 1ift distribution which possesses these properties could
readily be obtalned by spproximating any given angle-of-attack distribu-
tion by & suitsbly chosen lineasr one. However, this procedure would
yileld poorer spproximations than the ones furnished by equation (26);
for a parabolic angle-of-attack distribution on a wing of very small
aspect ratio, for instance, thils procedure would yield the 1lift

distribution
c_c’_l:él_(__y_)z
c 2 b/2

with a bending mament too low by 17 percent compared with the one of the
exact 1ift distribution,

ce i
=3¢ GR) |

whereas equation (26) ylelds

2t G o]

with a bending moment 8 percent too high. For very large aspect ratios,
7p end 7p Dboth tend to the chord distribution c/E, so that the lift

distributions given by equation (26) tend to the correct limiting velue,

ce,
—_ = C,
C/AHw o

Therefore the accuracy of the results furnished by equation (26) mey ve
expected to increase as the aspect ratio increasses, whereas the accuracy
of the other approximetion is independent of aspect ratio.

o (28)

olle

In this connection, 1t msy be mentioned that "strip theory" consists
in using equation (28) for all aspect ratios and, hence, is not very
satisfactory for wings with medium and low aspect ratios. For instance,
for the case discussed in the preceding paragraph, 1t furnishes a bending
moment which is too low by 25 percent for a delta wing, and too high by
25 to 100 percent for tapered wings. (The two figures pertain to taper
ratios of 1/4 and 1, respectively.)

Substituting the velue for "o from equation (27) into equation (26)
glves the following expreseion for ch/‘: )

ce, C b/2
= =-f§Eu[;b/2 {E&D(y) - K y5(y) + pK 8(y-n{] xR(n)}-m(n) dn
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The expression in braces in the integrand is the desired generalized .
aerodynamic influence function and will be designated by G(y,n), so that

oly,n) = [rply) - K 75(5) + 1K 8(r-n)] o) (29)

cey _ EEQ b/2 .
== f_b/e G(y;n) (n) an (30)

In the limiting cases of wings of very low or very high aspect ratio,
7D and yp sapproach a common value, say 7. Thus, for wings of very

low aspect ratio,
6(y,n) = £[7(x) + v a(y-n)] #(n) (512)

Wwhere & 1s the Dirac delta (unit-impulse) function, and for wings of
very high aspect ratio, o

G&(y,n) = b 8(y-1) 7(n) ~ (31b)

which 1s the Green's function essocilated with strip theory. Thus, on
wings of very high aspect ratio all the 1ift produced by the local angle
of attack at & given station is carried in the immediate vicinity of
that station, whereas on wings of very low aspect ratio much of the 1ift
1s carried elsewhere. This tendency for a glven stetion to affect a
grester portlon of the wing as the span decreases 1s, of course, to be
expected.

The preceding analysls can be applied to the oscilletory case at
a glven reduced frequency k, as well as to the steedy case. If the
assunption of invariance of normalized distributions with time or fre-~
quency is mede, as before, then 7D(Y): 7R(y), and K are independent

of frequency, so that equation (30) can be written as

Cp (k) a8 .p/2
—LE"E———_-f_ G{y,n) a(n) dn (322)

(y;k) =
(v - o2

where G(y,n), defined as before, is independent of k. By sepplying a
Fourier transformation to both sides of this equation the following
reletion is then obtained for flight through continuously verying tur-
bulen?e)(cf. eq. (4)), as modified by therassumption steted in equa~
tion (5):
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b/2
Uy,t) = —f B () 4y bf o/2 &(y,n) w(U(t-t)),n) dn  (32b)

where l(y,t) is the 1lift per unit span at station y and time &, and
where the function hL(t) is the one used previously.

The correletion function for this 1ift can then be written as

« b/2 ~bf2
g™ = [ [T matee) enate [0 [ ot o) we{fFrrmamta e e ong
= .Dsz _:f _: by, (b1) br(tp) db dty ¥ (U(T+ty-t5),7) (33e)

where the function

¥ (UTy) = 5 f -w f_ (M) 6(Fs%p) qfw(ﬁe'r2+(n2-nl)2) any an,

represents an effective correlation function, which when transformed into
the equivalent power spectrum mwe(w,y) can be used to obtain the power

spectrum for U(y,t) and hence its mean-square value. Thus

Py(yy (@) = be( Iu'q) ¢(k)|2¢w€(w,y) (33v)

Before the calculetion of Qwe(w,y) is discussed, the function

,¢w€(UT,y) will be defined in a somewhat more general form then in the

preceding paragreph in order to anticipate future needs, namely

b/2 .b/2
Vo, (Ur,y1,72) = 1-015 f o/ f_ o/ G(yL,m) G(ye,ng) #w(qU272+(n2—n1)2) dny dn,

If the assumption is now made that 7R(y) and 7D(y) are the same, as

is the case for all unswept wings and for wings of very low or very high
aspect ratio, they can both be identified with the function 7(y) used
previously, so that

o(r,n) = [(1 - K) 7(y) + oK 8(y-n)] 7(n) (54)
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and

¥, (Ur,yysyp) = {(1 - K)zq;we(U-r) + K(1L - K)[&We*(U-r,yl) +

e (72) | + 1% ([P )P )} 7(¥1) 7(¥2)

where *@é(UT) is the correlation function calculated previously for

the averaged vertical component of turbulence, and where

by #{(UT,y) = & f _:;Z 7(n) ﬂ:rw(‘JUE'f2+(y-n)2) an

Similerly, then,

q)We(w’yl’YE) = {(l - K)%We(w) + K(-l - K)] q)we*(wal) +

the*(w,yg)] + ¥° $w(w,y2-yl)} 7(¥1) 7(¥2) (35)
where mwe*(w,y) is the Fourier transform of wwe*(U¥,y), 80 that

b/2

Py x(w,¥) = %f 7{n) -?P'w(w,ly-nl) an (36)

-b/2

and thus represents an averaged form of the spectrum aw introfuced

previously. (See egs. (16) and (19).) For uniform spanwise loading and
the point correlation function used previously, this function is

rex(oy) = B2 5 Ly {3"'2[1% (21) * ¥o(®2) -
(1 + k'2)
o1 K1) - %2 Ko(®2)] * 2 (e) + aezKl(az)]](
where

b 4 vy I
5 4 2
— t
81,8 = 5 L+k

and is shown in figure 4 for several values of LZL.

b/2
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The more restricted form of Prre required in equation (33b) can

now be obtained from the more general form given in equation (35) vy
setting Yo =¥y =7 in the latter, to yield

R (@) = [(1 - K)eqawe(w) + (1 - K) 9y x(w,5) + Kaqnw(w)] ) (37)

Mean-Square Bending and Pitching Maments

When the variatlion of the gust intensity along the spen is taken

into sccount, the measn-square 1lift -]E.E is not an adequate index of the
stresses in the wing, nor cen the stresses be obtained from the mean-

square 1ift distribution 12(y). Instead, the mean-square bending and
twisting moments, as well as the mean-square vertical shear, must be
calculated directly.

In a menner esnalogous to thet employed for the 1ift and rolling
moment, each of these quantitles can be expressed in terms of a certain
influence functlion which, by means of the reciprocity theorem, can be
related to a 1lift distribution on the wing in reverse flow. TFor instance,
for the root bending moment the desired 1ift distribution is the one for
an angle of attack which is zero on one wing and proportional to y on
the other, as msy be seen from the fact that the bending mament can be
expressed. as

b/2 .
Mp =f_b/2 [Z(y)_-]m(y) £(y) dy

where

0 (y <0)

£(y)
fy) =y (y 2 0)

so that, according to the reciprocity theory for unswept wings in steady
or indiclal flow,

b/2 ,
My =f-'b/2 E'(Y):If(y) aly) dy

Similarly, for the root shear the required 1ift distribution corresponds
to an angle of ettack which is zero on one wing and uniform on the other.
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Such 1ift dlstributions can be calculated readily. For instance,
for subsonic flow and unswept wings they can be obtained from those given
in reference 10; the 1lift distribution for the roct bending moment is -
one-half the sum of a linear symmetric and linear antisymmetric 1ift
distribution, and the lift distribution for the root shear is one-half —
the sum of a 1lift distribution due to = uniform englie of attack and a
Lift distribution due to deflection of a full-span alleron.

However, in saome cases such calculations may be time-consuming, - ~
and en alternative spproach mey be desirable. One such approach congists
in synthesizing the desired influence function from the generalized 1ift-
influence (Green's) function discussed in the preceding section. In
order to illustrate the use of this approach, it 1s adopted in this
section.

The bending moment at any station ¥y (O <y §'%) and at any

time t can be obtained from the 1ift distribution considered in the
preceding section as S

b/2
Mg (3,6 =f (v' -y) iy',4) ay’
N

b/2 ® b/2 : :
- %—fy (v* - ¥) dy'f_oo by (51) dty %f_b/a &y',n) w(U(t=tyhm)an

° v/2 ,
-5/ ) e [, T w(ie-ta)n) e o

where the influence functlon for the bending moment is

M(y,n) = %f

¥

b/2 s _
(v' -¥y) ¢ly',n) ay' (39a)

80 that, upon introducing the previously used function for (y,n)

fity,n) = [(1 - K) My(y) + K my(y,m)] 7(n) (39)
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Wwhere

b/2
M (y) = lf ' -3y r(y") &

vJy
M(y,m) =n -3 (n>y)
Mp(y,m) =0 (nsy)

end, hence, for the root bending moment,
b/2
M (0) = %J; y'r(y') &y

7 (n>0)

ME(O,T‘[)
Mp(0,1) =0 (ns0)

Hence, the correlation function for the root bending moment is

b/2 Ab/2
‘FMB(T) —f f by (1) br(bp) 4ty dt, f { 1 - K)lez(y)

-b/2
K(1 - ) Ml(O)[ME(O,T]l) + M2(0,n2)] +

K°Mp(0,my ) M2(0”‘12)}7(“1) 7("2) "‘waE(T"tl'te)e‘“ (“2‘"1)2) dny dn
(o)

The approach used in the preceding sections can now be used to obtein the
power spectrum of the root bending moment by evaluating the inner pair’ of
integrals of equation (40), teking the Fourier transform of the result
with respect to T, and mulitiplying the power spectrum obtained in this

1

(,IaqS 2 o
5 l¢(k)l or by using one of the alternative spproaches

indicated for the lift.

manner by (
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The spectrum corresponding to the inner pair of integrals 1s, for
K =1 and uniform loading, '

CPWe"(w) = 2 n l:(—6ll-+ 2[3'2) +8[3'2K0<92—l) + (52B'+ B'B) Kl(%'—): +

:tUBll'(l-!- k'2)

22 (6h- 65 -89 %) - ast -5 (2]

where B' = Bql +~k'2, as before.

The integral of this spectrum is

Yy (0) = ;——EEK-EM + 1322) + o B/2 (24 + 128 + 3{32il
38 )

agminaetion O n nalicatces 8¢, &a oug € mean-gquare enaing
Exeminati fqrwe(o)idit that, although th ai bendi

moment tends to decrease as the span increases, it decreases less rapldly
then the mean-squere 1ift, with the result. that the effective lateral
center of pressure moves outboard. Quantitatively, the distance from the
plane of symmetry to the effective lateral center of pressure can be
defined as the square root of the ratio of the mean-square root bending
moment to the mean square of the 1ift on otie wing, that 1s, of the root
shear. Although these mean squares have not been calculated, the square
root of the ratio of mwe"(o) to the corresponding value for the root

shear increases by 15.5 percent as B Increases from O to infinity, with
much of the Increase realized at fairly small values of B.

For a swept wing the variation of the gust intensity along the span
results in a pitching moment which must be teken into account in calcu-
letions of the dynamic response of the airplane to continuous turbulence.
This pitching moment can be obtained in substantielly the same manner
as the bending mament. Thus, if ¥ 1ig the station of the mean aero-
dynemic chord,

b/2 :
M(t) tanAfb/2 F - |¥]) Uy,t) &

@ b/2
ten A %f_m hy (%) dtlj-b/z Mz(1) W(U(t-tl),n) an (1)
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:/2 ’

so that, with the previously used approximation to the Green's function,
Mz(n) = {(l - K)[:Tr - 2M1(0):| + K(F - lnl)} 7(n)

The correlation function, spectrum, and meen-square value of the pitching
moment can then be obtained in the manner used 1n the preceding sections.

Wing-Teil Correlation Effects

The teil strikes & given gust some time after the wing does; as s
result, a pitching moment arises which does not exist in steady or quasi-
steady motion, nor if the airpleme is very small, because then the time
leg is insignificant. This pitching mament can, for the purpose of the
present paper, be analyzed either in terms of the correlation between the
gusts at the wing and those at the tall or, 1f a time-~leg term is included
in the indicial-response function of the tall, In terms of the correlation
between the wing and tell response functions. The first point of view
serves to exhibit the effect under consideration more clearly and is
adopted first; the second is more convenlent and is adopted in the subse-
guent parts of this report.

In the somewhat srtificial case of a small wing and tail separated by
a relatively large distance, only the distribution of turbulence along a
1ine (the flight path) rather than in a portion of a plane is needed.
The pitching moment due to the verticel component of atmospheric Purbulence
cen then be written as

M(t) = f_ : by (t1) w(U(t-t1)) &ty + f : by (ty) w(xyg#U(t-t1)) dby

where xi 18 the tall length, and where hy(t) and hy(t) are the

pitching-moment responses to indiciel gusts hitting the wing and tail,
respectively, at t = O; both may include unsteady-lift effects, and,
if downwash effects are to be considered, hw(t) should include the

contribution to the pitching moment of the tail 11ift caused by the down-
wash at the tall associated with the 1ift on the wing which results from
the indicial gust.
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The spectrum of this moment can then be wriltten as
Pylw) = |Hw(w) + H-b(w)‘2 - 2R (l - ei%)xl) H *(w) Hy(w)p o {w)

where the symbols I{{ } and * designate, respectively, the real part
and the complex conjugete of a complex number. Obviously, when Xy
gpproaches O the second term in the bracket in thls equation venishes,

gso that the first term represents the perfect-correlation effect, and
the second represents the correction for imperfect correlation.

In order to furnish an estimate of the magnitude of the effects
under conslderation, some calculations have been made on the basls of
the assumption that a real coefficient p exists such that

He(w) = p H(w)

which implies that the attenuation with frequency of the contributions
of the wing 1ift and tail 11ft, respectively, to the pitching moment is
the seme. The ratio p is -1 for neutral stability, emd ¢ > -1 for
stable fiight; 1t is positive when the aerodynemic-center location
{(tail off) is behind the center of grevity, so that positive wvalues of
i are not likely to be incurred with normsel configurations and flight
conditions.

For thils case,

Pylw) = lEt(w)|2[(l +p)? - Eu(l - cos m}—Ui):l ?, (@)

and

W
(Mz)tail alone

= (1 +p)? - 2p if(z—% %;_)
where

j:d |Ht(cu)|2'q1w(a.)) (l - cos —m;—c-t‘-) dw

[ o oto)

Xy Xt
¥’ ©/f2
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The function ¥ heas been calculated for seversl values of lts arguments
by means of the lift-attenuation function given in equation (7) and the
point spectrum used in the preceding sections, and is shown in figure 5.
Also shown is the ratio of the mean-squere moments as & functlon of the
factor p which in figure 5 is referred to as Mw/Mt- The effect of

imperfect correlation 1s seen to be very large as the condition of neutral
stability is approached; the entire pitching moment is then the result
os Instentaneous differences in gust intensities at the wing and tail.

In genersl, however, the tail length and the span are of the same
order of megnitude, so that an analysis of the effect of imperfect corre-~
lation between the wing and teil must take into account the averaging
effect of the wing span. The piiching mament at any instant is then

o b/2
M(t) = %-f_w by (%) dtlv/:b/a 7(v) w(U(t-t1),¥) ar +

[>+]
f hy (1) w(xt+U(t-tl),O) dty (42a)
00
Hence, the power spectrum of this moment is

(@) = |Erle)] Fo (o) + [Ey(@)] Ppylo) +

2R {eiﬁx’“ it () Hw*w} Py (e, 0) (420)

where mwe(m) is the averaged spectrum of equations (11) and (13), and
@we*(w,O) is the spectrum of equation (36) for y = 0. (It should be

noted that hi(t) is the response to an indicial response which strikes
the tail at t = 03 1f it were the Indleial response to a gust which

strikes the wing at +t = 0, the factor eLU 6 in the preceding equation
would not be required.)

DYNAMICS OF THE RIGID AIRPLANE

In this part of the report the motions of a rigid airplane subjected
to atmospheric disturbances are considered. This part thus epplies
directly to those sirplanes which fly at relatively low speeds and do
not experience any significant structural deformations, and slso serves
as a preliminary to the treatment of the flexible airplane In the later
parts.
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The assumption is made that the motions are smell encugh to permit
the use of linesr spproximstions to the resulting serodynemic forces and
to permit the linear superposition of these forces. The longitudinal
degrees of freedom (pitching, vertical, and horizontal motion) and the
lateral degrees of freedom (yaw, sideslip, and roll) can therefore be
considered separetely. The first two sections of this part are concerned
with the longitudinsal motions of a small airplane. The material presented
here 1s thus s generallzatlion of the single-degree-of-freedom analysis
presented in reference 2. Mathemstically, the dynamic system is now
described by a set of slmultaneous ordinary differentliel equations rather
then a single one, but the problem of calculating the pertinent transfer
functions is still ome of simple algebra. The extension of these results
to the large alrplane is effected in the third section, using the tech-
niques developed in the first part of thils report. The lateral motlons
of a large alrplane are considered briefly In the fourth sectlon, and the
cambination of the stresses due to longltudinal end lateral motlion of a
large airplane 1s dilscussed In the fifth section.

Equetions of Longitudinal Motion

The equations of motion of an airplene caen be expressed in several
coordinate systems. The system which 1s generally the most convenlent
one for anelyses of alrplane steblllity and is generally referred to as
gtablility exes, consists of body-centered axes which are normsl and
pearallel to the relative alr velocity and rotate with it as the airplane
pitches or yaws. (See ref. 11, for instance.) The serodymemic forces
related to this exls system can be measured more readily in wind tunnels
than those related to other axis systems. TIn view of the very close
relation of & stability analysis to the problem considered here, these
exes will be used in this part of the paper, but in the analysis of the
flexible airplene in tbe subsequent parts of the report space-centered
axes will be used, because they are slightly more convenient for that
purpose.

The alrplane will be considered to be in steady level flight prior
to dlsturbance. The motlons studied will be the devietions from their
meen values; for instance, the angle © consldered here will be the
difference between the disturbed end the initial value of the angle of
pltch. Hence, the motions and forces calculated by the method indicated
here must be added to their mean values to obtaln the total motions and
forces.

Inasmich as, for the purpose.of a stetistlicel analysle, the dynamlc
characterlstics of the ailrplane are represented most conveniently by ite
transfer functions, attention will be confined in this section to sinus-
oldel gusts snd motions.
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For this case the linearized equations of longitudinal motion can
be written as follows (see egs. II-193 of ref. 11, for instance):

in - Z, -7y =1iaT Wp Zy Dyl fw
X, 1w - Xy g up ¢ = (k) |Xy Ful|u (¥3)
“laMe - My My =P - daMg| | © My My

The stabllity derivatives which appear in these equations are defined
in table 1 in terms of conventional serodynamic coefficients, and the
numerical velues are given for the example used in reference 11. (The
value of the mean chord is not given iIn ref. 11 but 1t is assumed herein
to be 10 feet on the basis of other information glven in ref. 11.)

In snalyses of the stablility of a rigid airplane the quasi-steady
approximation to unsteady-lift effects is usually made, in which, in
effect, the forces corresponding to a steady attitude, to constant dis-
turbance veloclties, and to constant accelerations are considered. This
epproximation is Justified becsuse the motlions of concern are generally
sufficiently slow. For the same reason this approximaetion can also be
made in analyzing the response of an airplane to atmospheric turbulence.

However, in this problem another type of unsteady-lift effect occurs,
namely, that related to the forces directly attributeble to the turbu-
lence. This effect is here teken 1into account by multiplying the quasi-
steady values of the forces due to gusts on the right side of equa-
tion (43) by the attenuation function @(k). This procedure implies the
assumption that the airplene is smell relative to the scale of turbulence,
inesmuch as no aversging effects have been taken into account; these
effects will be discussed presently. Also, this sattenuation function is
gtrictly eppliceble only to the normal forces.

The unsteady effects on the drag are not known becasuse of the rela-
tively complicated nature of the mechenism which gives rise to drasg. If,
however, the esssumptlon is mede that upon entry into e sharp-edge gust
the drag rises lineasrly and attalns 1ts steady-state value in the time

required to travel N chord lengths, the drag equivalent of ]¢(k)| 2
is the function

1l - cos 2Nk

oN2K?

which, for N equal to sbout 5 or 6, agrees fairly well with |@#(x)]2
in the region of main interest (k > 1).
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The unsteady moment is also difficult to predict because of the
pauclity of knowledge concerning unsteady downwash effects for wings of
finite span. However, inasmuch as the wing 1ift contributes part of
the moment and, through the mechanism of downwash, determines to a large
extent the moment contributed by the tall, the use of the lift ettenu-
ation function for the moment appears ressonsble for a first approxima-
tion, and the use of the same function for the 1lift, drag, and moment
facilitates the analysis.

For a more refined anelysis, the time leg between the instants at
which the gust hits the wing and the tail must be teken into account, ~
not only for large alrplanes, but even for small alrplanes 1f phugold
motions ere important. (See ref. 12.) Also, the lag in downwash should
be taken into account for large alrplanes and possibly also for small
airplanes in some cases. One way of achievihg this result is Indicated
in the next part of the present paper; another is discussed in refer-
ence 12. - .

In equation (1L3) the unknown guantities Wp and up ere the normsl

and axlel components of the disturbance velocities of the airplene rela-
tive to the free stream. Inasmuch as the coordinate sxes rotate during
the motion, the time derivetives of these guéntities do not represent
the actual alrplene accelerstlons, which are required in anaslyses of the
loads experienced by the airplane and the degree of passenger discomfort.
If the deviations from e mean flight path are assumed to be small, the
accelerations normal and perallel to the chord or longitudinel axis of
the alrplane are substantially the same as the absolute vertical end
horizontal accelerations Z and X, which can be obtained from the
relations

Zo= g + W0
X = <ty ~ g8

The transfer functions for these quantities can then be obtained by
introducing these relations into equation (43).

In studies of the longitudinal stability of airplanes, equation (43)
ils rarely solved in the form given here. It is usually reduced to two
equatlions with two unknowns, either up &and 6 (the phugold case) or

Wp and © (the short-period case), the short-period case belng usually

the one of primary interest. The part of the turbulent energy conteined
in the frequency raunge near the phugoid frequency is relatively small,
so that the phugoid caese has no significance for the analysis of loads
and accelerations resulting from atmospheric turbulence. Hence, the
ghort-period case, which ignores the phugoid oscilletions, furnishes an
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excellent approximstion to the losds and accelerations associated with
the longitudinel motions of an airplane in turbulent alr. However,
another two-degree-of-freedom case, the one involving Wp end up, is

useful in certain studies of the effects related to the Interaction of
horizontal and verticel camponents of turbulence.

Both of these two-degree cases can e reduced to the single-degree-
of -freedam case involving only =z (or Wp) - For airplanes which have

& large moment of inertia in pitch this simple case furnishes a good
approximetion. It has been studied 1n reference 2, where substantially
the seme approximetions to the unsteady-1ift effects were made as are
made here, except that in reference 2 appsrent-mass effects were included
{(These effects are not included in the stebility derivatives used in
equation (43) because they are usually small - less than 1 percent of

the mess of the airplane - and are different for each degree of freedom.
However, 1f deslred, the spparent mass pertaining to a given degree of
freedom can esgily be added to the alrplane mass 1in calculating the
stability derivatives.) However, this approximation is more nearly valid
for calculsting peak loads persuant to an entry into a sherp-edge gust
than for calculating the response due to random turbulence. Consequently,
in the following sections, attention will be confined to the short-period
case, although the analysis is equally applicable to the other case and
easily extended to the case of three degrees of freedom.

Solution of the Equetions of Longitudinal Motion

Trangfer functions.- If the degree of freedom pertaining to x
(or up) is ignored, the solution of equation (43) can be written as

A (o) Blw)| (v

N ()
) By (w) Bg(m) u
where the transfer function Hg(w) is defined by
A 4 B v
(o) = gu) 2T PO T G (45)

-Agw® + Boim + Cg

where, in turn, the coefficients are defined in terms of the stability
derivatives (see table 1) by
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Ag=1 Ay = -2y
Bg = -(zw + Mg + U4g) BY = 2, (U + Mg)
Co = MgZy - Ui, Cf = Uy 'z - MZo)

The trensfer function Hg(w) can be defined similerly in terms of the
coefficlents

BE =My r TNy
By = (' 2y - Wy')
Gy =0

In these equations & distinction has been made between the values of Zy
and My which occur on the right side of equation (43) and are here
designated by & prime mark, and those on the left side of that eguation.
The primed derivatlves pertaln to the 1ift and moment directly due to '
gusts, whereas the unprimed derivatives pertain to the 1ift and moment
due to airplane motion; the reason for this distinction is discussed in

u u u u u
a later section. Furthermore, the coeffilclents Az, By, Cy, Ay, By,

and Cg are the same as the coefficlents Ag, B§, .

Zgs Dg's My, and M. are replaced by Z,, 2Z,', M, and M,'.

except that

With these transfer functions the mean-square velues of % and §
can be calculated from the spectra of w and u by using equation (l),
provided that the simultaneous sction of w and u is taken into
account. In order to analyze this effect the vertical acceleration Z
will be considered, but the analysis will be spplicable to © or any
other characterigtic of the airpleme which responds to w eand u.
Furthermore, the trensfer functions need not be those considered in
equation (L4), but can be those calculated for the three-degree-of-
freedom system or for a flexible esirpleane.

Normal-acceleration spectrum and mean-gquare value.- For the present

purpose the indicial-response functions H;(t) and h;(t), which are the
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Fourier transforms of the trensfer functions (see eq. (3a)), are more
convenlent. In terms of these indicial-response functions,

2(t) = f_: by (tq)w(U(t-ty) ) atq + f_: hy (t1) w(U(t-t1)) by

Then, if w(t) and u(t) are stationary in a statistical sense, the
correlation function for #(t) can be written as

¥ (1) = f_ : f_:[h?zf(tl) BE (t2) % (U(T+t1-ta)) + B (t1) By (t2) ¥y(U(r+t1-ta)) +

Bf (51) B (t2) ¥ (T(T+t1-t2)) + 1F (b1) B (to) M(U(—'Htl-te))] dty dtp (46)

where \FW(UT) is a cross correlation of w and u defined by

¥, (UT) = w(x+Ut) u(x+#U(t+7) )

Now, 1f the turbulence is 1sotroplec, the mutually perpendicular
velocity camponents uw end w at polnts i1n the XY-plene are stabtls-
tically independent, and their cross correlation is zero. Therefore,
the two terms in equation (46) involving ¥,,(UT) venish, and the power

spectrum of Z 1is

2y(0) = |H()| o (0) + |E0)|P0,) (17)

so that, generally speeking, the power spectrum of a response which
depends on both the horizontal and the vertical component of turbulence

is simply the sum of the power spectra of the two contributions, provided
the turbulence is isotropic. (This statement cen be shown to be true

even 1f the distribution of the gusts over the span is taken into sccount.)

For the short-period two-degree-of-freedom case, then, the contribution
due to w is

2 ol G - [ - @) ()
0

oF - (200 - 302)m2 + G2

(o) dw

and the contribution due to u can be obtained from the seme expression,
but with the subscript and superscript w replaced by u. However, the

ratio of the two comtributions is in the order of ka2 ;s wWhere a is the
trim angle of attack in radlians, measured from the zero-lift conditlons.



L6 NACA TN 3910

Consequently, except at very high 1ift coefficients, such as those used
in landing, the contribution due to u: 1s usually negligible compared
with the one due to w and is disregarded in subsequent sections.

By means of the lift-attentuation function glven in equation (7)
and the point spectrum used in the first part of the paper, the inte-

gral for Z2 has been evaluated (vy using the technique of paxrtial
fractions for the integrand) for the example of reference 11. (The
lift-attenuation function of equation (7) hes been used despite its
shortcomings In order to faclillitate the analytic integratlion of the
spectra.) The results ere shown in figure 6, as are the results calcu-
lated simllerly for the three-degree-of-freedom case, the other two-
degree-of-freedom case (horizontal and vertical motion; referred to in
the figure as the zero-plitch approximatioql, and the single-degree~-of-
freedom case (vertical motion). An examination of this figure indicates
that, at least for this airplane, inclusion of horizontal motions does
not affect the mean-square normel-acceleration response to esny significant
extent. . These célculations pertain to a "small" airplene, and no dis-
tinction has been made between the primed and unprimed values of Z,

and M.

The preceding treatment of the short-period case has the advantage
of using reasdily saveileble information concerning the charecteristics of
any given airplane. TFor the purpose of trend studies a dimensionless
form of the transfer functions is preferable. The preceding equation

for EE cen be written in dimensionless form (the contribution of

horizontal gusts again being neglected) as

2
£-(2F 2y gl denl e vede
g?  \ee/2/ uv2«BJo e 2(ko2 - v2) 2+ (k24 42)% 102
(48a)
and, similarly,
2 (RP2L 2%, 2 [T sl 2 v g
(28/c)? (E/—z) u_i[(v ?) +k°-.\ fo ot - ofk? - D ¢ (k2 +42) TP =
(48v)

where k 1s the mass parameter

N - - S
CrPST ’



NACA TN 3910 L7

v 1is the dimensionless damping coefficient

VEL.]ﬁe_E

20U Tl/2
Tl/2 is the time to demp to one-half amplitude, which is glven by

log, 2

- S )

so that

bolly . 1me® g Oy

and ko 18 the dimensionless frequency of the short-period oscillatiouns,

with
- 1 \2
wo = \MoZw - Wy = L(zw + Mg + U)
so that

T2 N2
kg = 1| me { Cog, P Cng -1 _.l.mﬁz Cmg * Cmg

Thus, for this two-degree-of-freedom case the dimensionless mean-
square responses are functions of only two additional parameters, which
are dimensionless forms of the main characteristics of the short-period
case (the short-period frequency and the time to demp to one-half ampli-
tude), beyond those encountered in the single-degree-of-freedom case,
L*

L

Bending-moment spectrum and mean-square value.- For a small sirplane
the instanteneous bending moments at varlous points on the span are
proportionel to the instanteneous normel acceleration. For instance,
the root bending moment cen be written as

My =Xy - XT3 (49e)

namely, the mass parameter Kk and the scale parsmeter s =
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where I, eand my are, respectively, the 1ift on and the mess of the

wing, and vhere ¥ and ¥ are the lateral distances to the center of
pressure of the 1ift on one wing and the center of gravity of the mess
of one wing. However, Iy 1= proportional to the lift L on the entire

airplene, which in turn is proportional to_the normal acceleration, so
that

Ly = 2 u3
and :
e = 3y - 29 ()

Hence, the spectrum and mean-square value of Mp sare proportional to the

spectrum and mean-square value of %, respectively, the constent of
proportionality being the square of the guantity in the brackets of
equation (49b).

Special Problems Related to the Lorgitudinal Motion
of Lerge Alrplanes

Single~-degree-of -freedam cese.-~ In the preceding sections the air-
plene hag been assumed to be small In the sense of this report, and
neither the instanteneous lateral varlation of the intensity of turbulence
nor the difference between the instentancous intensities at the wing and
the tall has been teken into account. In this sectlon this restriction
is removed by Introducing the aerodynemic forces calculated in the first
part of this report into the dymemlc anelysis of the preceding sections.
The arguments advanced in the preceding section for ignoring horizontal
gusts and horizontal motions are equelly valid for the large airplane;
therefore these gusts and motions will not be considered here.

For the single-degree~of-freedom case involving only vertical motion
the required modification for the normel acceleration is very simple.
For this case the transfer function is

w 1

(W -P(k

B (w) = -f(k) . E“ZW (50)
where Zw', attenuated by ¢(k), ig the stabillty derivatlve for vertical

gusts and, hence, represents the 1ift per unit gust intensity. Therefore,
if the result for the 1lift calculated in the first part of this report
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is used, the mesn-square normal acceleration becomes

w

—_— o 22
"2_ 2 Z.W-CD o
. -fo [9091% 225 dgle) 0

(The function @, (0) 1s dePined in the first part of this report.)

This expression differs from the result obtained in reference 2 only in
that @, (w) 1is here replaced by @y (w).

However, even for the single-degree case the calculstion of the
bending moment now beccmes & considersbly more complicated problem,
because the latersl centers of pressure of the 1ifts due to the motion
of the airplsne and directly due to turbulence no longer coincide.
Equation (49a) now becomes

-]

b/2
%f_m by (t1) dtlf.b/z () w(U(t-t1),y) dy (51)

where CLm is the lift-curve slope for the entire airplane, hL(t) is

the response function used in equation (38), and yy(y) is the function

M(y,n) used in equation (38), with y = 0. In the first two terms on
the right side of equetion (51), 2z and % can be related to w by

means of H; (the Fourier transform of the function ﬂg presented

in eq. (50)) and the 1lift directly due to turbulence obtained in the first
part of this paper, so that these two terms can be written in the form

® b/2
: f  u(t) dtlf oyp ") w(U(e-t1).) &

and, hence, equation (51) becomes

® b/2
Mp(t) = % f_ _at f-b/2 [hL(tl) () + By (1) ﬂy)] w(U(s-ty),y) dy
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The required influence function for the bending moment is, thus,
i (v,8) = 2[br(6) () + By(s) 7(3)] (53)

Although the two terms of this functlon: are products of a time-dependent
and & space-dependent constituent, as in equation (5), their sum cannot
be gplit up in this menner. Hence, the techniques used in the first
part of this paper are not dlrectly spplicable. The general treatment
of problems involving influence functions for which the assumption of
equetion (5) is not valid will be considered in the last part of this
paper. However, In this section a speclal technique will be used that
applies to cases for which the influence function can be expressed as a
sum of several terms (two in this case), each of which can be expressed
as a product of two functions, which depend, respectively, on time alone
and distance along the span alone. (See also ref. 13.) This epproach
is more convenlent then the general spproach of the last part of this
report when the number of terms is two or, possibly, three. (Although
in this section only two terms will be considered, the generalizstion
to three or more terms 1s straightforward. ) When the number of terms

is greater than three, the general approach becomes more convenient.

If the value of Mp given by equation (52) for + + T ig multi-
plied by the value for ~t. and the result is averaged, end if the Fourier
transform of the resultant correletion functlon is then taken, the fol-
lowing expression 1s obtalned for the spectrum of the bending moment:

Py () = | B0 Ty (@) + [yl |0y @) + 2R {Ey(o) B*(0) } @y (@) (54)

where the symbols R{ } and ¥ designate, respectively, the real part
and the complex conjugate of a complex number. In this equation Hﬂ(w)
end Bp(w) are the Fourier treansforms of .hy(t) eand hp(t), @y ()
1s the previously deflned aversged spectrum for the 1ift, and @Wel
and Qweg sre averaged spectra obtained in a similar manner but with

the value of T' given by equation (12) replaced by

(b/2)-n ]
Pl(n) %l/:b/e 7(¥) ZMS(Y+H) dy
r (55)

Pg(ﬂ)

(v/2)-q
bf I:?’M () YMS(YH]) + 7Ma(y) ™ (y+n:| dy

J

where the subscripts s and &a refer to the symmetric and entisymmetric
parts of 9y, respectively.
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The contribution of the antisymmetric part of 7y to T's eand,

hence, to the spectrum for the bending moment stems basically from the
asymmetry of the instantaneous distribution of gust intensity over the
span. This asymmetry gives rise to a rolling mament (which was consid-
ered in the first part of this report) and, hence, to rolling motions,
which contribute additional bending moments due to the aserodynamic and
inertis loads assoclated with these motions. If, for the purpose of
calculating the bending moment due to symmetric flight through turbulent
ailr alone, these motions are disregarded, then the contribution of ™

to T, should be disregarded as well. The problem of combined symmetric
end antisymmetric motion will be considered presently.

As pointed out in reference 15, the mean-square bending moment calcu-
leted in this menner mey be smaller or greater than the value calculated
by ignoring spanwise veriations in gust intensity. If the mass of the
alrplane is elmost entirely contained in the fuselage, the decrease in
the 1ift which results from teking these variations into account causes
a decrease in bending moment. However, 1if most of the mass is in the
wing, the net bending moments (aerodynamic less inertia) for a uniform
spanwlse gust are very small, and the effect of teking spanwlse variastions
of gust intensity into account is to increase the mean-square bending
moments. .

Two-degree-of-freedam case.- For the two-degree~of-freedom (short-
period)} cese the analysis given for the normel scceleration in the pre-
ceding section can be extended as follows: As indicated in equation (i)
the transfer function for % 1is now .

2 .
_pen (ZMW + Mg)im + UM‘:|m(-ZW') dx) +
i «? + Bylo + Cg |

Bl

B (w) =

L OCEy) } M, $(x) (56)

Iy «? + Boiw + Cg

(‘]Ihe following analysis can be applied equally well to ) by using
Hg(w) instead of H‘;(cn))

If the expressions inside the brackets of equation (56) are desig-
nated, respectively, by Hj(w) and Ho(w), and their Fourier transforms

by hy(t) and ho(t), then, as a result of the definitions of 2.’
and M;', '

Z(t) =fm hl(tl) L{t=ty) dtq +f°° hy(ty) M(t-t1) dtq (57)

-
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where I{t) and M(t) sare the instantaneous 11ft and pitching moment
due to the vertical camponent of atmospheric turbulence, which have been
obtained in the first part of this report. The calculation of ¢E(w)

or of 22 thus requires not only the spectra of L and M, the calcu-
lation of which has been discussed, but also the cross speetrum of L
end M, which has to be calculated directly from equations (4) and (42a).
The result is

P3(0) = |Ey ()] *|Bw)| Tygl0) + |Hg(w)|eﬂm,<w)|2¢we<w) .

|84() | Py (@) + 28 { ST () Hw*(m}» qawe*@,o)} +
e%{aﬁ@ B) o) B0} gy o) +

R {m(e) B0 Ho) B2 @)} o *w,0)] (58)

where the first two terms represent the contributions of the spectra
of L and M, respectively (see egs. (14) and (42b)), and the third
represents the contribution of the cross spectrum of L and M. For
the present purpose the functions H(w), E(w), and EHy(w) can be

expressed as
Hw) = m(-zy) #(x)
Ho(w) = m axg (-2Zy) B(k)
B(w) = [Ty - m oxa (2] #06)

where /Axg 1s the distance fram the aerddynemic center (tail off) to

the airplene center of grevity. This definition of the contributions of
the wing and tall to the piltching moment 1s based on the considerations
that the direct contribution of the wlng cen be estimated with good
accuracy and the total pitching moment is likely to be known from experi-
ments, so that the contribution of the tail (which includes the effect
of the wing 1ift on the downwash at the tail; can be determined as the
difference of the two. The functions @we(w and @we*(w,o) have been

defined in the first part of this report. In view of the fact that the
function @(k) contained in some of the terms of equation (58) always
sppears in terms multiplied by others which contain @*(k), only the
absolute square of this functlon is required, as before.
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Special Problems Related to the lateral Motion of
Large Airplanes

The equations of motion in the leteral degrees of freedom (roll,
yaw, sideslip) have the seme form end cen be solved in the same way as
the equations for the longltudinal motion. (S8ee pp. ITI~53 to III-67
of ref. 11.) Again it is convenient to cast the problem in the form
used in a stabllity analysis in order to take adventage of the results
of such an analysis. For a small sirplene it 1ls necessary only to
replace the terms due to rudder deflection by corresponding terms involving
side gusts, nemely,

Y5g g Y Yy F #'(k)
Ipg 8p WY Ig 7 ' (k)
NSR_SR by Ng % ¢ (x)

where @$'(k) 1s a suiteble side~force attenuation function for side
gusts and the notation of reference 11 is used for the other terms.

The terms corresponding to aileron deflectlon can be disregarded for

the smell airplane. In the lateral degrees of freedom the small airplsne
thue reacts only to side gusts. On the other hand, the lerge alrplane
also reacts in the leteral degrees of freedom to vertical gusts through
the rolling moment calculated in the first part of the present paper.

If this rolling moment is to be included, 1t replaces the term Isp Ba

used in reference 1ll.

Instead of treating all three degrees of freedam simultaneocusly,
in stability analyses two one-degree-of-freedom cases sre often consid-
ered, nemely, the one of sideslip alone, with angle of yaw equal and
opposite to angle of sideslip (the Dutch roll cese), and the one of
rolling alone.

The Duteh roll case msy be used for gust-load purposeg in connection
with yewlng and sldeslipping motion due to lateral gusts, provided. the
phase of the motion is not important. (As may be noted from the preceding
sections, the phase of a transfer function is important only in terms
involving cross spectra.) Also, the Dutch roll case msy prove useful
in calculeting the vertical-tail loads resulting from flight through
turbulent elr, particularly if the humen or automatic pilot holds the
wings substantielly level by means of the ailerons. However, ln general
it does not appear to be as satisfactory an approximation as the one-
and two-degree-of-freedom approximations for longltudinal motion.
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For rolling motions due to rolling moments, the single-degree case
of rolling slone eppears to furnish a very good approximetion. Although
the rolling motion csuses yawing and sideslipping motions, these moticns .
do not eppear to reflect on the rolling motion. Thus, the rolling motion
which results from the rolling mament can probebly be calculated falrly
accurately without regerd to the other lateral degrees of freedam.
Furthermore, within the assumption of small motions, the stresses asso-
clated with these other lateral degrees of freedom do not generally
contribute appreciably to those assoclated with the longitudinal degrees
of freedom in the parts of the structure for which the letter are critical,
such as the wing (although they msy be critical for other parts of the
structure, such as the vertical tall). Therefore these degrees of freedom
(yaw and sideslip) will be ignored in the treatment of the large flexible
ailrplene in the last part of this paper. However, if chordwise bending
effects (deformations parsllel to the chord) are important, as they may
be in some cases at speeds close to the flutter speed, these cther lateral
degrees of freedom may have to be included in the analysis.

For +the large airplene, which responds in the lateral degrees of
freedom both to vertical gusts end to side gusts, the superposition of
the resultlng responses, such as stresses, may be effected in the way
indicated for the interaction of horizontal and vertical gusts. If the
turbulence is i1sotropic, the vertical and lateral guste are statistically
independent for points in the XY-plane, so that the spectrum of a given
response is equal to the sum of the spectrum of that part of the given
response which 1s due to vertlcal gusts and the spectrum of that part of
the response which is due to lateral gugts.. o

Combinetion of the Results Obteined From Anaslyses of the
Longitudinal and Lateral Degrees of Freedom

The instantanecus wing stresses depend both on the motlione in the
longitudinal degrees of freedom (primarily vertical motion and pitching)
end on those in the lateral degrees of freedom (primarily rolling). The
purpose of this section is to indicate how the stresses associated with
vertical motion and pitching cen be cambined with those assoclated with
rolling due to vertical gusts, perticularly in the case of a large rigld
sirplane. (A small sirplane, flexible or rigid, does not roll as a
result of the action of vertical gusts, and for the lerge flexible air-
plene it is more convenient to consider rolling motion simltaneocusly
with the other motions, so that the superposition 1s effected asutamaticelly
in the process of obbtaining the required transfer functions.) For all
airplanes the effect of sgide gusts can then be taken into account, if
isotropy 1s assumed, by adding the stress spectra dlrectly
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In this section the instantsneous stress at a given part of the
wing will be essumed to be proportionel to the instentsneous bending
moment at that section of the wing, so that consideration cen be confined
to this bending moment; also, the alrplane will be considered to be free
to move in only two degrees of freedom, namely, vertical motion end
rolling. The extension of the following arguments to stresses which
depend on the vertical shear and the torque as well, and the inclusion
of pitching as en additional degree of freedom, can be effected. readily
and will not alter the conclusion reached here.

When rolling motions of the airplane are taken into account, the
bending moment due to the aerodynamic forces associated with rate of roll
and to the inertia load assoclated with rolling acceleration can be
expressed in terms of the rolling moment by a superposition integral.

In turn, the rolling moment cen be expressed in terms of a superposition
integral ianvolving the insta.nta.necus gust Intensities along the span,
the influence function vy '"(y) used in the first part of the psper, and
en associated response function hM(t) Bence, equation (52) is modi-

fied by the inclusion of a third term and becames

© 'b/2
%&)iﬁmﬁhﬁwaﬁﬂﬁ)m®)+m@g7@)+%@Q7%ﬂh@@¢ﬂm)w

If the spectrum for My 1is now calculated in the manner used pre-~
viously, the following result is obtained:

g (@) = [0, @)+ [Be(o)] Ty, @) + 2R {m0) BF@) ] 0, (@) +
lH;ﬁ(“’)l Eche5(w) + 2R {HL(cn) Hﬁ*(m)} cpweu(w) (59)

where Hy(w) is the Fourier trensform of hy(t), and where Pur (w)
)

and cPWeh_(w) can be obtained from equation (12) with the following values

of I‘5 and I‘Lp respectively:

(2/2)-n
=2 ' :
r3(n) bf-b/z 7' (y) 7' (y+n) ay

(b/2)-n
Iy, (n) f 7' () my (yen)

b/2

n
o'
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(The function I‘3(n) is four times the function TI''(n) considered

previously in connection with the rolling moment. This factor of four
must be teken into account in hﬁ(t).)

The spectrum mMB may be considered to consist of two parts: The

terms listed in the first line of equation (59), but excluding the con-
tribution of ™M, to Qwe (see eq. (55)), represent the contribution
2

of the symmetric parts of the instantaneous gust distributions or the

contribution assoclated with symmetric motion; the terms on the second

line and the contributlon of 7Ma to mWe represent the contribution
2

of the antisymmetric parts of the instanteneous gust distributions or
the contribution associlated with rolling motion. Therefore, the power
spectrum of the stress due to gusts snd conmbined symmetric and rolling
motion resulting from the gusts ls the sum of the two power spectra
(that for the gusts and symmetric motion alone and that for the gusts
and rolling motion alone), provided the direct contribution of the gusts
is split up into & symmetric and antisymmetric part and each 1s tsken
into account only once, in connection with the sppropriate type of motion.
The cross-correlation terms between the symetric and antisymmetric con-
tributions to the stress can be shown to involve integrals which contaln
products of symmetric and antisymmetric influence functions and, hence,
vanish, so that the cross correlations gre zero; hence, the two parts

of the comblned spectrum are statistically independent and, therefore,
directly additive.

DYNAMICS OF THE SMALL FLEXIBLE AIRPLANE

The purpose of thils part of the paper is to consider the transfer
functions relating the stresses at various points of a small flexible
airplene to the vertical gusts which cause them. The longitudlinal and
lateral degrees of freedom are still separeble, and only the longltudinal
degrees will be considered; the lateral degrees, which are involved in
analysis of the response to side gusts acting on the vertical tall, can
be analyzed in the seme way. Therefore, for this case only one-half of
the wing need be considered as a result of the symetry (or antisymmetry,
in the case of the lateral degrees of freedom) of the problem.

The method which 18 outlined in this part consists in an extension
of the numerical-integration method of aeroelastic analysis described
in reference 14 to sinusoldal motlions of the airplane. This extension
takes into account the facts that the aerodynamlc forces now have out-
of -phese as well as in-phase parts and that vertical deflectlons must
now be calculated separately because the structural deformatlions can
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no longer be cheracterized by engle-of-attack changes. Also, the "rigid-
body" degrees of freedam (vertical and pitching motion of the airplane

as & whole and structural deformations of the tall) are now taken into
account.

The result 1s a set.of linear algebraic equations (which serve as
an approximation to the ordinary differential equations that characterize
the problem) for the sairplene motions and deformations in terms of the
applied serodynamic forces directly due to gusts. The desired transfer
functions cen then be obtained from solutions of these equations at
various frequencies, and the power spectra of the stresses are given by
the product of the sbsolute square of these transfer functions and the
point power spectrum of the vertical camponent of turbulence. The same
equations may be used to calculate with little additional effort certain
aeroelasstic effects, such as the static aeroelastic deformatlions and the
flutter speed, which are usually cbtained in separate analyses.

Loads Applied to the Wing

The loads applied to the wing stem from three sources: The aero-
dynemic loeds directly due to the action of the gusts, the serodynamic
loads due to the motions of the airplene, and the inertia loads.

The 1ift asnd pitching moment (about the elastic axis) per unit span
on a two-dimensional sirfoil undergoing sinusoldal angle-of-attack changes
and vertical motions in incompressible flow are (see ref. 15)

la = 2rqe {C(k) Bl + 2 ikja - ik ﬁE:[ + (Lkg - eBka)“ + gé% E?E}

(60)
my, = 2rqe? {C(k) el[(l + 2epik)a - ik E?E] - \:%I: ik - <5L2 + 352)1{2]0. - 525- 12 E%E}

The terms multiplied by C(k) are referred to as the circulatory terms
because they are calculated from the bound and shed vorticity, and the
others are referred to as the potential terms. The potential terms are
in the nature of additional-spparent-mess effects, and all those that

involve k2 are usually treated together with the inertia forces rather
than with the serodynamic forces. For compressible flow, however, the
forces are calculated in a different mamner, and the division of the
forces into circulastory and potentisl perts then has little meaning.
Consequently, in order to facilitate the extension of this analysis to
compressible flow, this distinction will not be made herein.
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The aerodynsmlc forces ere therefore written as

lg = Eﬂqc[al(k) o + '62(1:) -cj_E:]
] . ; (61)
m, = 2nqc2[6'3(k) o + G, (k) ﬁé]

so that for lncompressible f£low

G (k) = (L + 2e1) (k) + LE - e3k2

Oo(k) = -1k C(k) + %

(k) = (1 + 2¢,1K)e; (k) - Z—l‘ ik + (31-5 + e52)k2
G, (k) = -1ke; c(k) - 325- K2

In order to calculate the 1ift at a given point of a wing of finite
span en sppropriate Green's function 1s required. An epproximation to
this function besed on a reciprocity theorem of linearized lifting-~surfeace
theory, 1s given in the first part of this paper; as used for the compu-
tations of that part, this function impllies the assumptions that the
spanwige dietribution of the 1ift for oscillations of the wing as a whole
is substantially invarient with frequency and that this distribution is
the same in direct as in reverse flow. Neither of these assumptions is
egsentlal to the analysis but both, and particulerly the first, simplify
1t considerebly. With these assumptions, the desired 1ift distribution
is then given by expressions of the form of equations (32a) and (34).

For the present purpose, however, & set of aerodynemic influence
coefficients is required, rather than influence functions. Such a set
of coefficlents, based on the same ideas, can be obtained readily by the
techniques used in references 9 and 10. The result msy be expressed as
follows: : I

{z}a = ¢r a4 & () [Q]{a} + ag(k)[Q}{a_—ja'}} (62a.)
where the serodynamlc-influence-coefficient matrix [Q] 1s defined by

[e]= (1 - 0 {2}zl + x}]
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where, in turn, {l} is a unit column matrix, and LIJ is a row of

integrating coefficients sulteble for integrating a continuous function
for a range of its argument from O to 1. Thus, for instance, if n
equidistant points on the semispan are considered, and n 1s odd, then
according to Simpson's rule

oL |rko2h b1
I.I_I‘n_llé:3:3:3:---3;3_l

Very little informetion is avalleble concerning the spanwise distri-
butions of the pitching moment on wings of finife span in unsteady flow.
By means of the reciprocity theorems an appropriate Green's function
could be estimated if the 1lift distribution for wings wlth parsebolic
camber were knmownj; however, such 1lift distributions do not appear to have
been calculated for wings of finlite span 1n unsteady flow. In fact,
relatively little is known about moment distributions even in steady flow.
However, the avalleble information indicates that the locel center of
pressure does not appear to be very sensitive to the 1ift distribution.
(See ref. 9, for instance.) It will be assumed that this is also true
in unsteady flow at = glven frequency, and that, furthermore, these cen-
ters of pressure are gilven by two-dimensional theory. With this assump-
tion the moment can be written as

{mp} = Cr.%a {-6’5(1;)]}1 [e}{a} + &, (x)]e] [a] {E:_‘?E}} (62p)

The 1lift and moment distribution due to the gust cen be calculsated
in a similer mesnner. In the following snalysis, the magnitude of the
gust intensity is considered to be unity, snd the longitudinal reference
point 1s the Intersection of the elastic axis and the wing root, so that
the instanteneocus gust intensity at any station y is

-ikL%L tan A
=e ©/2 (63)

With this function w,
1.2 Bk

{z}g ———1a] {W}

g}y = 2o s )Ielc (4] {w}

where @(k) 1s the Sears function, as before.

’ (64)




60 NACA TN 3910

Finally, the inertlas loasds are

Zi = -ﬁ'Z. + ﬁeac&

myy = -(rz + (eac)E)EH + e

or

{11 =- 1{“‘}

i £
fnc}, = S(_—gf 22+ (ep0)?| [ {o} - T 2 ] {2} J

L (65)

The loads applied to the wing cen thus be written, in summary, as

) zor, Splx) [] + Cr.e Ci(x) [a] -

Cy € $(x)
pkz 5[] pk:. 5 [mege] —I-"'U— 2]
1 E(E) 5(5) Az N . (66)
{mT} : ez, Gy (k) Te]lR] - !or@ 6'5(1{) [ellRl+ .a-} *
Czu'c B(x)

[

- - =

2 _Titepe 2 T2+ o]
s ] i 7l

Toads Applied to the Tail

The loasds epplied to the tall are simllsr 1in nature to those epplied
to the wing, but the tail experilences additionsl loads as & result of
the downwash produced by the 1ift on the wing. Again, little is known
gbout the downwash In unsteady flow, and even in steady flow the downwash
cannot be predicted accurately because of boundery-leyer effects on the
fuselage and the wing root. Consequently, even in steady—flcw analyses
experimental results are usually relied upon.

In the following analysis, the assumption 1s therefore made that
experimental results sre avallable for steedy flow, in the form of the
downwash derivative 3¢/dx. In order to determine the attenuation of
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this value with frequency, the results of the analysis of reference 16
will be used. These results indicate that the time variatlion of the

tall 1ift due to the downwash ceused by the wing 1ift which results from
a unit Jump in the wing angle of attack cen be approximated by en imme-
diate jump in the teail 1ift of -0.16 of the steady-state value and another
Jump to the steady-state value after the time required to travel the dis-
tance from the 45-percent-chord point of the wing to the gquarter-chord
polnt of the tall plus another eighth of the chord length. Hence, for
sinusoidal angle-of-attack changes the tail 1ift due to downwash is

de -ik(ﬂ-‘-; Sr_)
(I‘be)m,z = Crq, %454 5 [-0-16+1.26e c/2 4 ® Bu 2e) 1K), = 1k %}
(67)

where xi' is the distance from the intersection of the elastic axis

and the wing root (assumed for this purpose to be at the 45 percent point
on the root chord) to the aerodynsmic center of the tall. As pointed
out in reference 16, this approximstion is valid only for k < 0.35;
however, this range is adequate for the present purpose.

Similarly, the downwash esssociated with the wing 1ift due to sinus-
oldal gusts glves rise to & tail 1lift which, within this approximsation,
is

5 -ik(i—t/—+% ;—”.) -0.61k CE—J-“
2 c
(Lte)g = -Cp_ q¢ Ft % -0.16 + 1.16e ¢ e v, (68)

(The additional lag represents the time required to travel the 0.6 root
semichords from the 45-percent-chord point of the root, which is the
reference point for the gusts, to the T5-percent-chord point of the wing
root, which 1s assumed to be the point governing the 1ift at the wing
root, inesmuch as it is the centroid of the influence function for the
chordwise pressure distribution.)

The other serodynamic forces are those due to the motions of the
airplene, those due to the tall deformations, and those directly due to
the gusts. On the basis of the assumptions made in the preceding section,
these forces are

L, = cl%qtst[aj(k) oy + Cl) s+ Bpl) dm v Elie) 85 (69)
1 [+
e

Cr, uSt ik ——
- L‘I’G_U ¢<_t k) o /2 (70)

c

Ltg
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where

~ 2!+ = (s c cp Xt F %;

Cs(x) = \1L + 21k ——2 C(zt-k)Jri:tk-:t 2
[ c 2 c [ c

& (k) = - °t) 1%t 2

Cg(k) = ikc(%—k +5 =K

o “helt) (e i Ct e\ o

Co(k) = (1 + 21k —2— C(:k)+—:k-e (:) k

T c Cc 2 c 3t\¢T

end o,. &nd z, are the angle of attack and vertical displacement of
the airplane at the wing root. T .

The inertia load on the tail is
Lgy = ‘m’c(.z.r +0E - xy )

or

_ mya
T T -2
2E)

Here the center of gravity of the tall has been assumed to coincide with
its serodynamic center; in order to remove this aessumption it is necessary
only to add (or subtract) the distance between the two to xt' in equa~

tion (71).

Ly Zp + A2 - Xy'ay) (71)

The normel forces on the tail can then be summarized as follows:

Ly = q[F]_(k) zy + Fp(k) ap + F5(k) Ao + Fy(k) Az + F5(k) wt] (72)

where

F

- £ 1%
_ U St de ik(E 2k E)
Fi(k) = 2Cy T Cglk) + ik < -0.16+ 1.16e

njo
o
] of
~—

1l
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Fo(k) = CLy, flqi 8¢ d Ts(k) - (1 + Eé]_‘_ik) -g-f: [-0.16 +

-T2
p[c
52
F.k) =C % g (k)
Ay Py . 2
7 (k) = 2C = = Ce(k) + X
Ty
2\2
c q"tst lki-.b_
o fz) .|,
7o (k) gl o % 1-0.16 +
X' 1 Cp xt' o Cr
. lse'ik(a% i eik(Ee 0"%)
and 1
it
c/2

The piltching maoments corresponding to these normal forces can be
obtained in the manner employed for the wing. Bowever, inasmuch as the
tail chord is usually small compared with the fuselage length, the
travel of the center of pressure of the tall is small compsred with the
length xi'. Hence, the center of pressure will be assumed to remain
at the serodynamic center of the tall, and the pitching moments are
then -x;' +times the corresponding forces, so that

M, = ~axg! [F(K) 2y + Fp(k) oy + F3(k) A + Ty (k) 22 + Fo(k) we]  (73)

Wing and Tail Deformations

The wing deformations may be calculated either from structural
influence coefficients or from the bending and torsicn stiffnesses of
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the wing used in conjunction with simple beam theory. The latter approach
will be followed here, based on the method of reference 12.

The bending and torsion moments on the wing structure may be obtained
by integrating the applied loads. If numerical methods are employed to
perform these integrations the results may be written as follows:

s
(b/e) b
Mp cos A Lz i mein A [I] 2 ()
= e ——— bommmme e T

Mp o] E cos A l5—[1] T
_ B 1

yimllerly, the deformations are

I b 2 1 1 §
Z - Zp 1 (2 cos A) [II ] [:E_f E [O] My

S B 1= ) )
(1_5_)4 1 for] E‘ﬂ 1]

&) st d]

e e e e o o e e

(75)
where the integrating matrices (see ref. 12) perform the following

operations:
LI]{ }vf: £(e') ag'
[IIJ 'Lf f £(e") at" at’
[r]4e -’“f 2(g') ag’

[II'ﬂ{f}-#LEJ;E' £(e") ag” de’
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These integrating matrices mey be based on the trapezoidal rule, Simpson's
rule, or any other numerical method; the intervals chosen for ¢

(0S¢ S 1) need not be of constent width unless a specific rule demands

a uniform spacing.

The structural deformations of the wing may then be written in
terms of the applied loeds &s

. .
1
I
= q|==———dm———— + g=———— (76)
P @ || &

where the sutmstrices D], [@], [®], [®], [®], = [®]

designate, respectively, the four quadrents and two halves of the matrices,
obtained by postmultiplying the square metrix of equation (75) vy the
squere and the rectanguler matrix of equation (66), respectively.

For the purpose of the present analysis, which is concerned primarily
with the wing stresses, the tail deformations are treated by including
only the vertical displacement and angle-of-attack change of the tall as
a whole due to the tail load. These quantities mey be obtained from a
static test which consists in epplying a concentrated normal load at the
aerodynamic center of the tail and measuring these deformastions. They
may also be obtained from e vibration test in which the deflection curve
of the rear part of the fuselage in the lowest vertical-bending mode is
measured; in thile case the desired spring constents can be deduced from
the frequency relation of a simple mass oscillator in terms of the meas-
ured frequency and of the mass of the empennage (including the part of
the fuselage which may be considered to move with the empennage). In
the absence of such tests these constants mey be calculated in an anal-
Ogous manner.

The tall deformations may then be written as

fou = KLy
(77)
ta = Kply,
so that, also,
Ko
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Inssmuch as these deformations are not independent of each other, only
one need be retained in the analysis. Therefore, iIf Az 18 eliminated
by means of equation (78), Aa cen thern be obtained in a form similer
to thet used for the wing deformations in equation (76):

K
fo = =Ky 4 Fy(k) 2, + Fplk) oy + [Fs(k) - K_i F (k) | Aop = oK) Fy(k) wy
(793

BEquetions of Motion

Equations (76) and (79) are equations of motion inasmuch as they
describe balances of aerodynemic, structursl, and irnertia forces. In
fact, if the airplane fuselage were immobile (op = zy = 0), they would

be sufficient to calculate all unknown quantities. However, 1f the
fuselage is free to move, two edditional equations are required to obtain
the two additional unknown quantities o and zy. These additional

equations are those expressing the dynamic equilibrium of the forces
on the fuselage, namely,

Ly + Lt - me(Zp - ¢ &) = 0
(80)
My - xgDy - (re? + (Ax)2)medy + Ax mey = O

where the wilng 11ft and pitching moment can be expressed in terms of the
1ift and moment distributions ¢ and m as

L = |2 Blxl, LoJJ{mZT} 1 N
My = L—e(’%)%an A fII], 2 %LIJJ{I;T}
ol @]+ <@}
(82)

v -al@) - @4}
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where L(:)J, L(:)J, L@:)J, and. L(:)J are the rows obtained by

postmultiplying the rows of equation (81) by the square and rectanguler
matrices of equation (66). In equation (80) the fuselage lift and moment
have been neglected; they can easlly be expressed in terms of a, and

Zzy and included, if desired.

The equations for the talil deformation An and those for the
overall normal force and pitching mament can be cambined with equa-~
tion (76) as follows: For the sake of definlteness 1t will be assumed
that n stations on the wing are considered, Including the one at the
root, so that there are 2n + 1 unknown quantities, and that in the
column matrices defining applled loads, deformations, and so on, the
values at the root of the wing are written at the top:

Zroot1

Ztip
< Lproot

XK

mt;p
| 2o

The first and (n + 1)th equations of the system defined by equa~-
tion (76) express only the trivial fact that the structural deformation
et the wing root is zero. They are replaced by equations (82) and (79),
which are adJolned to the system, to yleld the cambined equation of
motion

B 11 T 1Y T )

0
11
101 0 °
1001 i 0@ z @ )

2, e 37t v S EER

0 101 0l]a ® ! ® « ®©
1001
....... . di S

L 0 0 ) L Jel Lo
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If the square matrix on the right side of this equeation is designated
the rectanguler matrix by [B] , and the quasli-unit matrix on

the left side of the equation by [l'] , the equation can also be written

(] - q[A]]{:o; -
The matrices [@] to [] are the seame as the matrices [@]

by [A] B

as

NACA TN 3910

ol

(83b)

to [@] of equation (76), except that the first rows of the latter,

vhich are all zero, are replaced as follows:

First row of =~

Replacement

Quantity added to the
leading element

®© © O

3

® 0 ©

First half of L@J

Second half of I_(:)J

[B]
|®)]

m.f
=i
Mo AZ 2
2€)

mfx‘tkg

2(8)°

Fy(k) +

Fg(k) -

-xy Fi(k) -

~Xq F2(k) +

njo

me rf2 + (Ax)a:l 2




NACA TN 3910 69

Also, the elements of the last rows and columns of the matrices [A]
and [B] are zero, except for the following:

Al,2n+l = F5(k) - IK(:_i_ F)_(_(k) Bl,n-l-l = F5(k)
Bpel,mel = g F5(k)

X2
Boal, ool = ~%|F3(k) - 2= By (k)
a Bon+1,n+1 = ~K1 F5(k)
Aone1,1 = Kp Fi(k)

Apntl,n+l = ~K1 Fo(k)

Aopil,onel = 'Kl[%(k) - % le,(kﬂ

Solution of the Equations of Motion

For the purpose of calculating the desired transfer functions,
equation (83b) may be solved directly for a given value of gq as & set
of linear algebraic equations with coefficlents given by the matrix

[17] - a[a] end with "knowns" given by the column metrix q[B] {‘xb}

(Yhere [A], [B], and {;;} are functions of k). The result is a

column matrix of the unknown amplitudes of the motions of the ailrplene.
If this column is calculated for several values of k 1In the range of
interest, these emplitudes, considered as functions of k, are transfer
functions from the gust to the motions.

This column matrix can be substituted into equation (66) and the
resulting column matrix {A;} substituted into equation (T74), to yield
a column matrix of bending and twisting moments which agein, considered
es a function of k, represents transfer functions fram the gust to these

maments. A set of transfer functions for the vertlcal shear could be
calculated similsarly from the relation
ol
my

SR

The stress at any point of the structure can be assumed t0 be given
by & linear superposition of the bending moment, twisting moment, and

- s s gt
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vertical shear at the given statlion, i1f elementary beam theory is used.

If elementary beam theory camnot be used because of the interaction of

bending and torslon stresses or because of shear lag, the stress at a -
given point can be expressed as a linear superposition of moments and C
ghears at other stations as well as the given station. In either case,

the trensfer function for the given stress is then produced by the seme

linear superposition of the transfer functions for the corresponding

moments -and shesars.

It mey be noted that, at zero frequency, solution of equation (85b)
¥lelds the static aeroelastic deformations and thus permits the calcu-
latlon of the changes in the 1lift distribution and the shift of the
aerodynsmic center that result from stetlc serocelastic actlon. Also,
Inasmuch as this equation completely describes the dynemic behavior of
the ailrplene, the speeds at which aercelastic instebility phenomena
occur can be calculated from it, although such calculations are beyond
the scope of this paper. Suffice it to point out that for such a calcu-
lation the degrees of freedom of the body must be eliminated firet, as
g result of the wesy In which the problem has been set up. This elimin-
ation can be effected readily by considering the first and (n + 1)th
rows of [A], but with Ayq, By ne1r Bpea,10 808 Ay oy replaced
by 0. If these rows asre premultiplied by .

-1
A1 Ay, ni1

Ant1,1 An+l,ntl

and used as- the first and (n + 1)th rows of a matrix which is otherwise

a unit matrix, and if this resulting matrix is referred to as [1“] y
then equation (83‘b) can be written for this homogeneous case as

167 - o1z} fo}

The products [1'] [1"] ema [A][1"] will now have two mull rows and

columns each, which correspond to zy and apr. If these rows and columms
z

- are deleted in o %, ylelding a column
Ya's?

are deleted and 2z, and o

z 1
o » , the remaining matrices are nonsinguler, so that they can be inverted
Fa*e? -

and the preceding equation can be written ss - -
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]
(o]

(8u)

(=] - afoe)]]
where [E| is the identity metrix, end

] = [RTE9 [T ]

The horizontal braces designate the fact that the null rows end columns
have been deleted.

Equation (84) is in the canonical form for the caleulation of
elgenvalues. If k 1is set equal to zero and the eigenvalues of [D(Oi]

are calculated by iteration, expansion of the determinant, or any other
suitable method, the lowest real and positive one represents the value

of the dynamic pressure at divergence. For swept wings the value lowest
in sbsolute magnitude is usually negative end 1s therefore of no practical
significence, although it is often used as an index of the aeroelastic
behavior of the alrplane.

This calculation can be repeated for various positive wvalues of Kk,
the first few eigenvalues being obtained for each. The results, which
will generally be complex, can be plotted egainst k. When any of the
eigenvalues becomes purely resl, it represents a dynamic pressure at
flutter, and the corresponding velue of k represents the reduced fre-
quency at flutter. (This statement is true only if the structural damping
is zero; such damping effects can easily be included, but the details of
the process asre beyond the scope of this peaper.)

DYNAMICS OF THE LARGE FLEXIBLE ATRPLANE

For the large flexible airplane the fundamentel proposition of

power spectral analysis, that the output power spectrum of a system is

the product of the sbsolute square of the transfer function and the input
power spectrum, is no longer valid if the input is considered to be the
gust intensity at a point. Nor can the output power spectrum be expressed
directly in terms of an effective input spectrum, as in the case of the
rigid airplane, where this simplificstion resulted from the assumption
that the indiclal-response function was expreasible as the product of a
functlion of time alone and a function of distance slong the span =slone.

In the first section of this part of the peper the statistical
problems involved in an analysis of the response of a large flexible
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alrplane are considered. The nature of the generalized transfer functions
required for this purpose 1s described, and the means whereby they are
combined wlth the input spectrum sre indicated.

The second sectlon is concerned with an extension of the method
outlined in the preceding part to the case of the large alrplane.
Although fundsmentally the dynemlc aspects of the problem sre unchenged,
and although the longltudinel and lateral degrees of freedom can still
be separated, a direct application of the approaches outlined in the
preceding parts of the peper to the large alrplane requires consideration
of the entire wing, rather than only one half of the wing. Ilttle addi-
tilonal computing time is then requilred to treat the laterel and longitu-~
dinal degrees of freedom simultaneously, and the necessity of combining
the results of two separate anslyses is obviated. However, attention
can still be confined to one half of the wing by using the technique
outlined in the dlscussion following equation (55) end in the section
headed "Combinstion of the Results Obtained From Analyses of the Longltu-
dinal end Lateral Degrees of Freedom.' Basically this technlique consists
in splitting the influence functions of concern into symmetric and anti-~
symmetric parts and using one part for an analysis involving the longltu-
dinel degrees, and the other in an snelysis involving the lateral degrees.
If this spproach is asdopted, separate anelysls of longitudinel and lateral
degrees of freedom is still preferable. '

Extension of the Statistical Approach

The power spectrum end, hence, the mean-squere wvalues of the
responses such as the stress at a given point on the wing of a large
flexible sirplene due to flight through turbulent alr can be calculated
in several weys. Perheps the most direct of these consists in using the
basic approach outlined in the filrst part of this paper and sterting
with an expression for the instantaneous value of the stress in terms
of & suitaeble indicial-response influence function, namely,

© ~b/2 . :
o(t) = f_m f-b/z hy (t15¥) w(U(t-tl),y) dy dtq (85)

The function hﬁ(t,y) is, as before, an indicial-response influence

function or Green's function for the partial differential equation. Tt
relates the stress as a function of space and time coordinates to the
applied loads, which are also functlons of space and time coordinates.
The essentlal difference between the problem considered in this section
and those treated in the first two parts of the paper is that this func-
tion can no longer be expressed a8 a product of a function of t alone
and y &alone. In some cases - in a modal epproach, for instance - it
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mey be expressible es & sum of several such functions, end then the
approech used previocusly for the bending of a large rigld sirplene free
to move vertlcally may be adopted, as has been done in reference 135.
However, in this section the case is considered in which even this
simplification cannot be mede.

The correlation function for ¢ can be calculated directly from
equation (85), and for the case of axisymmetric turbulence 1t is

o pa o/
¥o(T) =\/;mh/lwu/::/2u/::;z Hg (t1¥1) Bo(tar¥a) *ﬁ(ﬂ“e(“*tl’t2)2+(y2'y1)2) dyy dyp dty at, (86)

Hence, the power spectrum of o can be obtalned by calculating the
Fourier trensform of this functlon and is

b/2 ~b/2 4 N
CPO-((D) =\-/’.\..b/2 -'b/2 B§ (w,yl) I:g(w;y'g) CPW(U.), .Iyz-yl,) dy]_ dyg (87)

where @}(w,ﬂ) is the two-dimensional spectrum considered previously,

Eg(m,y) is the Fourier transform of ﬁg(t,y) with respect to time,
and the asterisk designates a camplex conjugate, as before. Thus, the

function ﬁg(w,Y) is a transfer function from sinusoidal vertical gusts

(of width dy) impinging on the wing at a glven station y on the wing
to the stress o, or a Green's function for the ordinary differentisl
equation (with the quantity « as a parsmeter) that relates the stress
amplitude as a function of the space coordinete y +to the amplitude of
the applied sinusocidal gusts.

%
The term Eg (0,51) ﬁg@D,yE) in equation (87) is complex; however,

the imsginary part can be ignored because it conbributes nothing to the
integral es a result of the fact that &, depends only on Iy2 - yl[.

In a manner analogous to the one employed in the first part of this
paper, the double integral in equation (87) can be evaluated by intro-

ducing the function "ﬁ‘;(a»,n) which tekes the place of the function I'(q)

used previously and is defined by an-autoconvolution of Hﬁ(w,n):

b/2
H(w,n) = 2 f oo R{H‘é*(w,y) H‘J(w,wn)} ay
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where R{} designates the real part. Hence,
b La¥)
@ (@) = fo % (w,n) &,w,n) an (88)

Another epproach consists in using the double Fourier transform
¢, (A) of the axisymmetric input correlation defined in the first part

of this paper. In terms of this function the correlation function \lrd('r)
can be written as

bf2 rbf2 pe e i = -
Volr) = & f f f f f f _ BoltLys) B (teva) sPavtrastzlfetran)] %( Mohe" | ny By tyy drp by At

-bf2J u/2
SELLL O (B sl on o

where the function

o © ~b/2
Towne) = [ [, meke) o

represents the Fourier transform (with respect to y) of the function
H‘g.(cn,y), that is,

-1 (A UtAsy) & at

" o/2 iy
H‘;O\lﬂ\a) —v/‘-b/z e Eo'(‘)\]_UJy') dy (89)
Hence,
©® A~ JAUT . ~
Pglw) = - f ~ f B f‘w e L gTioT iﬂ‘g(xl,xe)|2¢w(\,7\l‘?+7\22)aJ\l an, ar

Y
20

1

)| () = (o

With the approasch outlined 1n the next section, the function
H‘;(m;Y) can be calculated either directly or indirectly, by first calcu-~
lating the transfer function from that gust to the 1ift distribution and
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then the transfer function fraom the 1ift distribution to the stress.
For the indirect method,

b/2
Bw,y) = f o Bi(w,5) Bow) G(n,y) an

where the function Eg(w) G(n,y) 1is the influence function for the local

1ift or the Green's function for the aerodynamic problem involving sinus-
oidal gusts considered in the first part of thils paper; the symbols 1
and y i1in G(n,y) are interchanged, however, so that the function now
defines the contribution of a gust at station y +to the 1lift at sta-

tion 7. The transfer function Hﬁ(w,n) relates the (sinusoidal) stress

at the given point to a unit concentrated (sinusoidel) normsl force
acting at station 7.

With this Indirect method, the power spectrum for the stress at a
given point can be calculasted by sterting with the power spectrum for
the 1ift distribution calculated in the first part of the paper. For
this approach o(t) mey be written as

w ~b/2
o(t) = f f_ y h},(tl,y) Z(t-tl,y) dy dty

so that

® o ~b/2 ~b/2 2 .
WU(T) = f f f hc(tl,yl) hy (tz,ya) 1Z) (T+tl—t2,yl,y2) dyy dy, dt, dt,
- -Cs -

b/ad b /2
and
o) = [ [712 1) o) ox(omms) ary p (o0
-b/2vY -p/2
where

¥ (Ta¥LaVp) = L(bayp) H(EHET,)
The Fourier transform of this correlation functlon is, then,

v 12
Py (@557,) = ,Hz(w), Py (@) (92)



T6 NACA TN 3910

(See the section heeded "Generalized Aerodynsmic Influence Functions in
Unsteady Flow.") Hence,

b/2 -
(PO—((D) le(w)I f f‘b/2 H;'.*(Ub,yl) Eoz'(m:YQ) CPWE(U-)) dy; &yo (93)

If q)w. (w) 1s given by equation (35) , ‘the double integral cen be
expressed in terme of single integrals as follows.

og(e) = @) 2|1 - 107]6ta)] "oy o) + 21 - ©ORfo(@) @ (@)}

) W ’

b/2
Glo) = f oo 5 (w,y) 7(y) ay

b/e :
¢'(o) = f_b/a EYo,7) Oy *(a,y) () &y
(b/2)-n
¢"(w) = 2f-b/2 | %{Hé(w,y)} R{Hé(w,y—fn)} +

r{xlo)} I{H§<w,y+n)}] 7(y) 7(y+n) ay

a8 before, R{} designates the real part, and I{} designates lthe
imaginery part.

Equations (88), (90), end (93) thus represent three methods of |
obtaining the power spectrum of the given stress. One requires a trans-
fer function from the local gust intensities directly to the stress, an
autoconvolution of this transfer functlon, and the spectrum of turbulence
defined by equation (16), the second réquires a two-dimensional spectrum
of the turbulence defined by equations (l7a) and (17b) and a Fourier
transform of the aforementioned transfer function with respect to y;
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the third utilizes an autoconvolution of the transfer functions from
local concentrated loasds to the stress end the spectrum for local 1ifts
due to vertical gusts calculated in the first part of the paper. The
choice of approach depends to some extent on the information aveileble,
but is largely & matter of individusl preference.

The enelysis in this section has been based on the premise that
both halves of the wing would be treated simultaneously. Attention can
be confined to one wing by using only the symmetric parts of the influ-
ence functions in an analysls involving the longitudinal degrees of freedom,
and only the antisymmetric parts in an analysis involving the lateral
degrees of freedom. The symmetric part of an influence function for a
unit concentrated load or gust acting at station y is the response func-
tion for two loads or gusts of 1/2 unit intensity scting at stations ¥
and -y, respectively. Similerly, the antisymmetric part is the response
for a load or gust of 1/2 unit intensity acting et station y and an equal
end opposite load or gust acting at station -y. If this approach is
chosen, scme of the integral expressions given in this section assume
slightly simpler forms. For instence, equation (89) can then be written
for the symmetric part as

b/2

Bo(Aphp) = 2 fo cos Ay Eg(\U,y) &

and for the antisymmetrilic pert as
- b/2 -
T (A = -21 fo sin Ay Hy(MUy) &y

Calculation of the Required Transfer Functions

Depending on which of the methods outlined in the preceding section
is used, one of two types of transfer functions is requlired - either the
one from local gusts to the stress of Interest, or the one from the local
1ift to thet stress. Both of these functions differ in several respects
from those considered in the preceding part of this paper.

For either type of transfer function the structural deformations of
the wing under concentrated loads &s well as under distributed loads
will be required, so that the numerical-integration schemes used in the
preceding part have to be modified to same extent. Also, 1t may now be
preferable to consider the entire wing (rather than the one semispan
considered in the case of the small flexible airplane), so that the
various tremsfer functions are asymmetric. With the degrees of freedom
considered in the analysis thus doubled, it becomes preferable to include
one sdditional degree of freedom, roll, rather than to perform two sepa-
rate snalyses for symmetric and antisymmetric motlons with, respectively,
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one and two less degrees of freedom, and then to cambine the results. How-
ever, 1f the alternative approach of splitting up the influence functions
into symmetric and entisymmetric parts for use 1ln two separate analyses 1s
adopted, only one semispan need be considered, and the resulis presented

in this sectlion can then be simplified to a large extent.

Before discussing the modificatlons required to extend the dynamic
analysls outlined in the preceding part of the paper to the lerge air-
plane, 1t might be pointed out that chordwise deformations (deformations
parallel to the chord) will again be ignored. Agein, they can resdily
be included by a straightforward extension of the approach used here if
it 1s felt that they may be significant In any given case. If they are
included, however, yswlng esnd posslbly alsc sideslipping motlons can
probably no longer be ilgnored, because they nay glve rise to lsrge forces
in the chordwlse direction. If the entire wing is treated, these two
additional degrees of freedom can readily be dncluded, and all longitu-~
dinal and lateral degrees of freedom are then treated simultaneously;
1f two separate analyses are performed for the longitudinal and lateral
degrees of freedom, the symmetric and antisymmetrlc parts of the influ-
ence functions belng used snd only one semispan being treated, these
edditional degrees of freedom enter only intoc the lateral analysis.

The structural deformation due to local (concentrated) loads can
be obtalned in several weys. If measured influence coefficients are
used, they pertaln precisely to such loads and, in fact, must be modified
before they can be used for distributed loads (see ref. 12) so that it
is necessary only to use the ummodified coefficients.

If the deformations are to be calculeted in & manner similer to that
employed in the preceding part, the integrating matrices must be replaced

as follows:
B[] o B[]

where
Ipg' = 1 (¢ > p)
Ipg' =% (¢ =p)
Ipg' =0 (a <)
and

(%)2 [z1] oy %[II']
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where
IIpq_’.l""'Yq_" Yp (qu)
IT,q' =0 (a<p)

The feactor of 1/2 for Ipp' constitutes an spproximaetion which implies
falring through a discontinuity. If this approximation is to be avoided,
the deflections due to unit concentrated loads (the structursl influence
coefficients) can be calculsted directly from simple beam theory, in
which case the limits of integration take care of the discontinuities.
Thus, for instance, for an unswept wing, the normal deflection and twist
at Yp due to & unit concentrated load and torque, respectively, at Yq

are

A

Zpq =f0 —;1(;)— (0 S 74)

Yaq v .
qu_ =A j; E%‘G_T dy dy + (yp - YQ)f EI(y) dy (YP > Yq_)

p

%pq = j; _—GJ%y) dy (0 = 7q)
Yq

pa " 0 GJ%:Y’) v ' (v < yP)

The concentrated loads under consideration arise as follows: For
the transfer functions relating local 1ifts to the desired stress, the
local lifts may be considered to be concentrated loads of unit magnitude,
associated with concentrated torques of magnitude ejc. Equation (83b)

can then be written as (see also eq. (76))

] - q[A] = [r1] B (95)

where [Wl. 1s & disgonsal matrix of the values of w defined by equa-

tion (63), and where the matrix [?'] represents either the four

Influence~coefficient matrices for z and o due to concentrsted losads
and torques, or the squere matrix of equation (75) with modified inte-
grating matrices, as discussed in the preceding paragraphs.
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It mey be noted that equation (95) now represents not ont set of
simultaneous equations but several, all heving the same coefficlents
but different sets of knowns (as defined by the columns of the matrix

on the right side) and, hence, different sets of unknowns |the columns

Z

of the matrix a{ }. This situation i1s due to the fact that the func-
Loy

tions under consideratlon are, in effect, the responses of the alrplane

a8 a whole to sinusoldally varylng concentreted loaeds and are different

for each locatlion of the applled load.

Once this equation has been modified to take into account the
overall body motions and tail deflectlons (as explained in the preceding
part) es well as the rolling motions (as egplained_in thg following

z —
paragraphs), it cen be solved to yield the unknown values of [(x]. From
Ja's?

thege values the bending and twisting moments, as well as the vertical
gshears, can be calculated end added to those due to the concentrated
loeds. When combined linearly as required for the desired stress, these

moments and shears yield the desired transfer functions Hg(w,y).

If the transfer function directly from the local gusts to the desired
stress is to be determined, the response of the airplane to the 1ift
distribution induced by a sinusoidal gust of width dy eacting at ste-
tion ¥y must be calculsted. This 1ift distribution is the Green's func-
tion considered previously. If 1t is represented by the relation

Bg(w) a(y,n), with G(y,n) defined by the approximstion given in equa~-

tion (34), the concentrated loads arise from the delta function in that
expression. The right side of equation_(95) becames, 1n thet case,

a(L - x) H(w) [R] --EZE{Z-ZEEZ]--- Tw] + ook Hj(w) [RY] |-Frrsnnas

I

where rR] represents the square matrix o? equation (75), and. DRq

the one discussed in comnection with equation (95). Again, several sets
of simultanecus equetions are implied. Their soclution (after modifica~
tion for overall motlons and tail deflections) yilelds values of z sand

@ from which the trensfer functions Eg(w,y) can be calculated.
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The extension of the method of the preceding part to the calculation
of the deformations on boith wings is stralightforward. Essentially, dis-
tributed lifts and torques now have to be calculated for both wings and
integrated wilth matrices which can be assembled from those used for one
wing alone. No new problems srise in this process, so that it need not
be discussed further.

The Inclusion of rolling motlon, however, is not so straightforward.
One method consists in replacing all values of z in equation (83a) or
1ts equivalent by z + 8y and then reducing the columns involving this
quantity by the following relstlon (which sssumes that the new unknown
quantity, the roll angle 8, is listed at the end of the column):

' 1 ! SR N
l } | B |
L h
zZ + Oy 1 ! 0] :O{ \a A
. : P
{ T 1
e 1 | I |
t | B {
L | 1
- el % S I ll -
_____________ AN SN -
R i
;1 1
9 (= ' 1 ! < 7
lod 0 ! 1 ! 0 a
{ . 1
1 1
1 - 1
] I
] LI |
JUPEVETY [ ..i,. _____________ E_ _______ -
m‘ 1 [l AI,
e c ! Y ! 1 e
L ] | 1 1 —lJ

An asdditional equatlion must then be joined to the set, namely, the
equation of equilibrium in roll

b/2
f Uy) y &y - L& - Mp, & =0 (96)
-b/2

where Iy 1s the inertia in roll of the fuselage end empennage alone
inasmuch as the inertis effects of the wing are included in Z(y), and
MDt 1le the coefflclent of damping in roll for the empennage. For most
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cages both of these contributions are negligible. If they are ignored,
equation (96) can be written in matrix notation as

|11 {z}
where L;IJ 18 now a matrix which serves to perform the integration

required in equation (96). This condition can then be adjoined to the
other equations of the set in the same menner as equations (82) were
adjolned to the set in the precedlng part.

The result, agein, is a set of simultanecus equatlons for =z, a,
Ao, and ©® from the solution of which the desired transfer functions
can be obtained as outlined in the preceding paragraphs. Also, as before,
once the unknowns 2y, o, and 8 are eliminated from the set, the

divergence and flutter speeds can be calculated by conventional matrilx
operations; these speeds will then pertain to an airplene free o move
vertically as well as in pitch and roll and, hence, will include divergence
and flutter speeds in antisymmetric as well as symmetric modes.

DISCUSSION

Some Implications of the Assumptions Concerning the Nature

of Atmospheric Turbulence

The turbulence was assumed to be homogeneous in order to meke the
problem stationary in the statistical sense and thus permit the use of
the mathematical techniques developed for such problems. In a practical
sense, turbulence can be homogeneous only in a limited body of air. The
assumption thus implies that the dimension of this body of air along the
flight path is large compared with the distance traversed in the reaction
time of the alrplane, which in the case ‘of Ioad studies is of the order
of the time to damp to one-half amplitude, but in the case of motion
studies may be much larger. Obviously, the greater the body of air, the
greater the reliability with which the loads and motions cen be predicted
(in & statistical sense) for one run through it. In general, turbulence
at very low altitudes, which may be Influenced significantly by the con-
figuration of the ground, and turbulence in thunderstorms may not be
sufficiently homogeneous for the purpose of this type of analysis, but
other types of turbulence are likely to be substantially homogeneous over
sufficiently large dlstences.

Isotropy was assumed in order to permit the required two-dimensional
correlation functlons to be expregsed simply in terms of the one-dimensional
correlation functions. For sufficiently short wave lengths all turbulence
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is isotropic, but for long wave lengths it can be isotropic only if it is
homogeneous (both in the plane of the flight path and perpendicular to
it). The condition of axisymmetry, which is sufficient for most of the
results presented herein, is less restrictive than isotropy Inasmuch as

it does not specify the wvariation of the characteristics of the turbulence
in the vertical direction. In practical problems, if the turbulence may
be assumed to be homogeneous, the conditions of axisymmetry and isotropy
are likely to be satisfied to a sufficient extent to permit the use of the
approach presented herein for all but very long wave lengths. The wave
length at which it ceases to be valid depends on the size of the body of
air under consideration, being larger for a large body.

Taylor's hypothesis (to the effect that a space displacement Ax
along the flight path may be identified with a time displacement T = Ax/U
in the gust correlation functions) implies that the variation in gust
intensity that prevails along the flight path at any instant will remain
substantially the same until the alrplane has traversed the given body of
air. The required correlation functions for atmospheric turbulence are
thus in the nature of space correletion functions (rather than time corre-
lation functions) and have been considered as such. The statistical char-
acteristics of the turbulence are then independent of the speed at which
it is traversed. Clearly, whether or not this hypothesis is valid depends
on the flying speed of the airplane. On the basis of present knowledge
noc definite lower limiting speed can be quoted. However, indications are
that the hypothesis is valid for flying speeds greater than about 100 or
200 feet per second. The effect of finlte flying speed on the gust corre-
lation function can be expected to be most pronounced for large distances,
vhere the correlation is wesk, so that the effect on the various spectra
is likely to be small and to occur at the longest wave lengths, where, as
previously mentioned, the spectrum is somewhat uncertain for other reasons
as well; this effect 1s thus more likely to be significant for large than
for small eirplsnes.

The particuler correlation function used herein for the calculations
of the "averaged" correlation functions and spectra has certain theoretical
shortcomings - primarily that the associated spectrum does not decrease
rapidly enough for very short wave lengths, However, 1t does appear to be
adequate to represent the avallable information concerning the spectra of
atmospheric turbulence (see ref. 17, for instance). because the behavior
at very short wave lengths is relatively unimportant, ilnasmuch as alrplanes
cannot respond to them, and the behavior at very long wave lengths is
usuelly In doubt by reason of the nonhomogenelty of actual turbulence. In
the Intermediate range of wave lengths, this correlation function appears
to be quite satisfactory.

The persmeter IL* (the integral scale of turbulence) used herein is,
for practical purposes, a largely filctitious quantity, inasmuch as it is
proportional to the values of the gust spectrum for infinite wave lengths,
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which, in view of the uncertainties in the values of the spectrs at large
wave lengths, have little physical significance. Therefore, at present,
insufficient informetion is aveileble to give a value for L¥*¥ +to be used
in connection with the numerical results calculated herein, although a
value of 1,000 to 2,000 feet appears to be appropriate. As more informa-
tlon concerning the spectrum of atmospheric turbulence becomes available,
more definite values can be deduced by fitting an analytlcal expression
of the type used here to measured results in the range of frequenciles of
primary interest, and then using this expression as a means of obtaining
a value of I¥ by extrapolation of the measured results to infinite wave
lengths (zero frequency).

Considerations Pertinent to the Application of Stationary-
Random-Process Techniques to Gust-Load Problems

The purpose of this section is to point out how, in principle, the
results of analyses of the type outlined herein may be used in overall
load enalysis and, hence, in the design of an airplane.

Conslderation is confined in this peper primarily to the power spectra
of the motions and stresses of interest. As polnted out in references 1,
2, 3, and 11, for instence, a great deal of statistical information of
direct interest can be obtained from the power spectrum. For lnstance, if
the random process of concern (say, the given stress as a function of time)
has a Gausgslan probabllity distributlon, the expected number of peaks at
or beyond a glven level in a given period. of time can be calculated very
simply from the integral of the specirum and its second and fourth moments.

The results obtained in this manner pertain to continued flight in a
glven body of turbulent air. They have to be generalized by determining
the likelihood of flying through turbulence of the glven characteristics.
(See ref. 18.) The probability of exceeding a given stress level during
the expected life of the airplane while f£lying through atmospheric turbu-
lence can thus be calculated 1n straightforward fashlon. To this proba-~
bility must then be added the probability of exceeding this level in
meneuvers, landings, and, possibly, also in turbulence due to thunder-
storms, because In view of the possibly nonhomogeneous character of turbu-
lence in thunderstorms and the possibly nonlinear nature of the aerodymamic
forces incurred while flying through them, the techniques used herein nay
not be sppliceble to flight through thunderstorms, snd a separaste analysis
mey have tQ be performed. ) ' '

Although the available information concerning atmospheric turbulence
is inadequate to permit of any definite conclusion, the résults obtainable
with the approach outlined herein may turn out to be most significant for
the prediction of the low- and medium-amplitude stress cycles which are
important to fatigue studies; their validity for or contribution to the
prediction of very severe loads remains to be seen.



NACA TN 3910 85
CONCLUDING REMARKS

The statistical approach to the problem of calculating the dynamic
responses and the stresses of an alrplane subjected to continuous random
stmospheric turbulence has been extended in several respects; basgically,
only the assumptions of linearity, that is, of small motions and deforma-
tions, as well as homogenelty and axisymmetry of the turbulence are
retained.

The first problem considered was the effect of spanwise variations
of the instantaneous turbulent velocitles on the 1ift and momentse due to
turbulence. The mean-square lift has been shown to be reduced consider-
ably if the span of the airplane is relatively large compared with the
integral scale of turbulence. The shape of the spectrum of this 1lift is
affected relatively little by spanwise variations of gust Intensity,
except at very high frequencies, if the decrease in the effective mean-
square intensity is taken into account. The effect of sweep on the mean-
square 1ift and its spectrum has been shown to be small for wings with
a given distance from root to tip.

If the variation of the instantaneous veloclties is taken into
account, the rolling moment to which the alrplene is subJjected can be
calculated. The mean-square rolling moment has been shown to be propor-
tional to the ratio of the wing span to the integral scale of turbulence
for small values of that ratio. Similarly, expressions for the mean-
square values and the power spectra of the loceal 1ift, the bending moments,
and the pitching moment have been gilven. For some of these forces the
required aerodynamic information cannot be calculated by existing methods,
Therefore, certain approximations, based on experience with steady aero-
dynemic forces and aveilable knowledge concerning unsteady forces, had to
be made for the aerodynamic influence functions 1n unsteady flow.

The next problem considered was the dynemic response of a rigid air-
plane to random turbulence. This problem had previously been treated
for the case of an alrplane free to move only in the vertical direction
and small enough so that varlation of the turbulent veloclities along the
span could be neglected. In the present paper the response of an airplane
in three longitudinal degrees of freedom was considered; calculations were
made which suggest that the inclusion of deviations from the mean hori-
zontal motilon is superfluous in gust-load calculetions. For the remaining
two longitudinel degrees of freedom, the mean-square normal and angular
acceleration have been shown to be functions of only two parameters other
than the mass ratio and scale parameter of the single-degree-~of-freedom
case, namely, dimensionless forms of the short-period frequency and of
the time 40 damp to one-half amplitude. An indication is glven of the
manner in which the results obtalned In connection with the first problem
can be used to extend this dynsmic enalysis to the case In whilch variations
of the turbulent velocity along the span have to be taken Into account.
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The last problem treated was the dynamic response of a flexible
airplane, including vertical motion, pitch, and, when necessary (as
vhen spanwise varistions in gust intensity are taken into account), roll.
Horizontal and latersl (yawing and sideslipping) motions were disregarded
because they do not generally affect the wing stresses due to vertical
gusts. A method which represents an extension to the dynemic case of a
numerical-integretion spproach to the steatic meroelastic problem has been
outlined for the anaslysis of the problem at hand. The modifications
required in the basic statistlcal approach and 1n this method of dynamilc
analysis In order to treat the case in which spanwise varlations of the
gust intemnsity are Ilmportant have been dlscussed.

Although most of this enalysis has been confined to the vertical
component of turbulence, it has been shown that the simulianeous action
of longitudinsl, vertical, and lateral gusts on the wing stresses (with
due allowance for the fact that verticel gusts affect both the longitudi-
nal and the latersl motions of the airplane) can be taken into account by
simply adding the power spectra of the varilous contributions, provided
the turbulence is isotropic; the cross correlations or spectra have been
shown to vanish elther by the symmetry or antisymmetry of the influence
functions involved or as a result of the statistlical independence of
mutually perpendicular veloclty components.

The approach presented herein thus furnishes a foundation for the
prediction of the statistical properties of the stress experience of a
given airplene once the appropriate statlsticel characteristics of the
atmosphere have been determined. '

Langley Aeronautical lsaboratory,
National Advisory Committee for Aeronautics,
lLangley Field, Va., November 5, 1956.
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TABLE 1.- DEFINITIONS AND NUMERICAL. VALUES OF

STABILITY DERIVATIVES

Derivative Definition Numerical value
for the example
Bl +0 -1.430
Ty 18] Lm D 5
X Bl - c 0.0016
U L Dm
2g8
Xy ‘nTﬁ‘(CDu + cD) ~0.0097
gst_ 0.
My T5 On 0.0235
M qse? Cong, ~0.0013
DTy U=
2gSE
M + o
a =5 (Cm, * )
22
gsc
-ll 20
Mg 2Ty U Cmg 9
Wy, 1D 4 v v e o o o o o o o o e o v o o« . 30,50
Uy FPB v v 4 v o v s « « o o o o o o o 4 660
C, Fh v h e e e e e e e e e e e e e e e 10
ATtitude, £ « v « = o o « o o o o o o + . 20,000
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